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Abstract - The problems of identification and estimation of a closed-
loop system of simultaneous transfer function models are considered
with the approach of the"stochastic approximation® The classical pro-
perties of stability, structural identification and realization of the
system are preliminarily investigated, then a theoretical-practical
method of obtaining simplified moving average representation and cova-
riance factorization is defined . On the resulting expressions we have
derived a disaggregate strategy of system identification which directly
extends the univariate-unidirectional Box-Jenkins technics. In the esti
mation context the classical non-linear least squares estimators are
considerably simplified by approximating, as in the recursive pseudoli-
near regression algorithm, the gradient with the input-output quantities
of the system. Finally in an extended empirical example we have checked
the validity of the approximate representations,of the approximate esti

mators and we have compared the statistical performance of the transfer

function system with that of the vector ARMA model .

Keywords - Stochastic approximation, Simplified MA decomposi-

tion, Vector ARMA model, Iterative pseudolinear regression.



1. INTRODUCTION

This paper deals with the analysis of the structure of a system of simultaneous
transfer functions (TFS), with special reference to the practical implications
on the methods of identification and estimation . The approach followed is that
of'étochasticlapproximation"and in this section we introduce it

A model building methodology for open-loop rational transfer functions as

= B) = + B
(TF) v = v(B) x o+ p(B) a,
8
-—w,B-...w.B
V(B)::(wo “1 g p) ’ Ve~ output process
(1-8,B~...=8,8) x, = input process
(1 —elB-—...—Gqu) a, = white disturbance
B) =
¥(B) p ’ B = backward operator
(1—¢1B—...—qpr )

has been provided by Box-Jenkins(1970). In particular, a non-parametric stra-—
tegy of identification has been developed on the second order properties of

the system , expressed by the covariance functions (CVF)

(CCVF) y (B)= v(B) B v (B) (cross)

{ACVF) vy (B)= v (B) v (F) o° (auto) , F= 1/B

The advantages of the Box-Jenkins strategy lie in the simplicity of the moment
estimators of the y(B), in their ability to treat the system functions v(B),

¥(B) separately and in providing a concise view of their whole dynamic.

A multivariate closed-loop extension of the TF model is given by the system

(TFS) z = V(B) z + ¥(B) a (rational)

1] ©Tid
Although this model, through a linearization by row, can be reduced to a con-

strained multivatiate (m) ARMA system

(ARMA, ) #(B) z = 0(3) a (linear)



®(B)=1{¢..(B)} , ®(B) ={0..(B)}

1] 13

with @(B) diagonal, and although any ARMA  can be cast in rational form by ma-
trix inversion, the TFS seems preferable for the following reasons :
1) the rational structure is more powerful and parsimonious of the linear one ;

2) the univariate residuals enable a simplified estimation by row ;

3) it has a complete realizatin theory from the spectral factorization theorem;
L) each impulse-response function vij(B) has a proper denominator ;

5) it respects the different nature of the auto and cross dynamic regressions ;
6) potentially, it may be identified in a disaggregate manner by means of the

Box—-Jenkins technicg .
The last point is the central topic of the paper. The major theoretical obstacle
to it lies in the fact that the parametric expression of the coveriance matrix
is very complex

r(e) = [1- v(B)] ¥ ()L ¥(F) [I- v(F)']"?
whereas for a disaggregate identification we should have

(1.1) r(s)z[ 1T+ wB)] ¥BEF) =

To obtain the factorization (1.1), a necessary step will be to demonstrate the

validity of the representation

(1.2) z = [9(B)+ w(B)] a,

which, on the other hand, considerably simplifies the stability conditions .
Although the identification of TFS models by means of (1.1) has provided good
empirical results, and although the inversion (1.2) is very sensible since, as
in the univariate analysis, the number of parameters involved remains unchanged.
To show the validity of (1.1), (1.2), we cannot simply use approximation argu-
ments in the context of the conventional algebraic analysis; but we must also re
sort to nonconventional mathematical operators such as rational projectors on

linear Hilbert spaces

The second part of the paper deals with estimation methods of both TFS and



ARMA, models. In the present situation, packages for the joint estimation of
simultaneous transfer function equations do not exist, moreover the existing
routines for the ARMAm estimation encounter serious problems when m>2. Now, by
extending at multivariate and iterative level the recursive algorithm known as
pseudolinear regression (see Ljung-S&derstrdm(1983)), we have defined estima-—
tors easily implementable on the existing statistical software.
The method works by approximating the gradient with input -output quantities
{%t, at} ; the resulting estimators are asymptotically efficient and also mean
square convergent if the condition of system polynomials ' "passive" holds. In
many situations however, calculation is hindered by the necessity to have con-
stant stepsize (3}) to ensure convergence.
The paper ends with an extended example on 5 real economic time series. In it
we check empirically identification and estimation methods, the structural pro-

perties of TFS and ARMA , finally we compare the statistical performance of the
m

two class of models. The superiority of the TFS will be demonstrated .

(1.1) Simplified AR-representation

In this section we analyse conditions of orthogonality between the rational po-—
lynomials v(B), ¥(B), and their consequences in simplifying the identification
and the estimation of the transfer function model .

Consider a rational transfer function and pass to its AR-representation

(1.3) v, = v(B)Bx + y(B)a
(1.4) m(B)y - w(B)B x = a , m(B) = y(B)™*

from the univariate ARMA analysis , one would expect the number of parameters in
volved and/or the order of the rational polynomials not to change. Only the natu
re of the parameters (rational or linear) might be allowed to change.

In the strictly arithmetical sense however, the function w(B)=V(B)an(B) con

tains (P*q) new parameters, and this is in contradiction with the sequential fil

tering mechanism implicit in (1.3)



where, in the first step CCV(y,x) is filtered independently on ACV(y), and in

the second step since ACV(n) depends on ACV(y) the representation of n, may oc

cur directly through the {yt—k} basis, by means of a suitable polynomial w¥(B).
Now, the only possible way to have (1.3),(1.4) parametrically equivalent is

to require some form of polynomial orthogonality such as

T(B) V(B)Bb==[1—W1(B)] Vb(B)==Vb(B)
o Bk+§J

ie. [ﬂl(B)==zm ﬂkBkj J_[}b(B) =L_ v,

k=1

To this end, consider ﬂl(B), Vb(B) in the space P(B) of the linear convergent po

lynomials of B. P(B) is a linear vector space and the sequences {ﬂk}, {vk} repre
. k .

sent the coordinates of ﬂl(B), vb(B) on the {B"} axes. A measure of polynomial

orthogonality is then provided by the inner product

) = [ﬂ , T cee ] [ vo, V1, v2 ... ]'

(CIN

In practical terms, the above measure is close to zero assuming :
i) {vk},{ﬂk} decaying rapidly (i.e. adequate stability),
ii) a delay factor (b) relatively high ,
iii) {vk},{ﬂk} non-monotonic (e.g. complex roots).
To stress the role of (b), note that if n, - AR(p) with p<b, then ((ﬂl,vb))z 0.
This orthogonal property has important practical consequences. As we shall
see later, it simplifies the computation of the gradient in the estimation pha
se; 1n the identification context, having the equivalent representations

£
B + B +
m,(B) Ve Vb( ) . Fa

we conclude that ACV(y) = ACV(n), hence the identification of y(B) may occur on

¥ (B) directly .
yy

(1.2) Equivalence of PCCV -CCV

Differently to the univariate ARMA analysis, Box-Jenkins(1970) have not introdu
ced 1in the identification of vb(B) the partial cross correlation function

(PCCRF) . This function may be simply defined as the sequence of marginal regres



sion coefficients in dynamic regressions of increasing order

0 k

(PCCRF) { + n

v. } e =5, v, x, .
kk o yt J=o Jk t-j t
and can be computed through the deterministic system

(i)= 1 (5-i) 1=0,1,2 ....

. v,
ny J=o gk Yxx

i.e. vy =T w
Xy xx k

The unnecessity of {vkk} suggests that CCVF , PCCVF should have the same infor
mation and/or the same pattern and, in effect, for {Xt} white noise (I' diago
XX =
nal), we have ¥ o vk that is cross-covariance and partial cross-covariance

Xy
are equivalent (CCV =PCCV). This equivalence can be extended to {xt} stationa-

ry autocorrelated, by assuming orthogonality between [¥ (B)-1] and vb(B), hence
x

y (B) = v(B)Bbo2
Xy

Note that if X, - MA(q) with g<b, the above holds exactly because ((wl,vb))z 0.

At multivariate level, given the relationship between partial covariance and

model structure, the equivalence CCV = PCCV follows from the possibility of redu

cing any ARmodel @(B) =z = e , ®(o)= T , 1nto a constrained TF-system
t
= == ~ © ~ k
- = V(B)=1¢. .(B B =T V. 3B
) [1-v®)] =z =a_ (B)=to, .(B)/9, (B)}= 2 _ W
(TFS") . = . . =
n = #(8)7" e, ,  ®(B)= piag[s . (3)]

Then by definition of partial correlations as marginal regression coefficients,

from the first equation of the TFS* we have

vee T ) =W _ 2 0, k>p
tTt-k' Tt t=k+1 kk

in the i#j elements . In so doing an autoregression mzy exhibit both CCVF,

PCCVF  <nfinite, but this is possible only if the two are equivalent

Remark ~ As said, the condition of polynomial orthogonality has important conse

quences in simplifying the identification. We recall that if

~ AR <b (B) = B)
Yy (p), p N ¥, (B) Yyy( /
x, ~ MA(q), q<b (B) = v(B)B ¢?
. (a), q ey
thus, ¥(B), vb(B) are identifiable directly on the sample correlation functicns

avoiding filtering and prewhitening of sort .



2. IDENTIFICATION Of TFS

Let z; = [Z1t s th] , be a Gaussian stationary process mean-square summable
~ E(z z' =TI Zw r < o
.} - N (o,{r}) , E(zz )=rT e | Ty |l

and its transfer functions system (TFS) representation

(2.1) [T - w(B)] %, = %(B) s , a - I (o, I=Diag)
V(B) = {w, . (B)B°1i/s, (B)) 5 ¥(B) =Diag[6.(B)/¢.(B)]
1J 1J 1 ill
where E»,,(B),G,,(B),e,(B),¢,(B)] are linear polynomials of order (s..,r.. ,q.,
1] 1] 1 i i 1371

i
the arguments are expounded in brief statements and informal demonstrations .

p.) <= bij is the delay factor of 25, ©n 2i, and traceV(B)=0. In what follows

(2.1) Classical Properties

The classical (overparametrized) MA-representation and CV-factorization are

(2.2a) z =[I- v(B)]¥(B) = ¥(B) =

(2.2b) Ir'(B) = ¥(B)x ¥(F)'

t

(Invertibility-Stationarity) — Let z ~ TFS and Det [T- w(B)] = w*(B)/s*B)

(say); then the classical conditions of stability are given by :

(2.3a)  <nvertibility  [6,.(B), 6.(B)]2z 0 , |uw..(B)|<e
i] | ij

- N ; B
(2.3b)  stationarity L(Sij(B>’ ¢i(B)’ w*(B)]= 0 in |B|<1

Invertibility conditions are immediate. As regards (2.3b), given the relation
ship between stationarity and MA-decomponibility (multivariate Wold-Zashuin
theorem, see Wiener-Masani(1957)p.137), from (2.2a) we write

* k
kB J

o0 k- oo k. — co,
[(T-v,) - V3B i [zkzoka T=1[x+ L

Now, by equating products of matrices corresponding to the same powers of B,

the recursive expression of the {%k} sequence 1is

. k 0
¥ = (I1-v ) [, w. ¢ .- ¥
k ( O) [ J=1 3 k=] k]

that converges only if {Wk} converges, i.e. the &, .(B) are stable.
1d



From another point of view, having

w(B) = [T-w(B)] " #(B) 6*(B)/w*(B)
the adjoint matrix [I-W(B)]* has rational polynomials with stable denominators
because they are formed by products of the Gij(B) ; the stability is then com-

pleted by the requirement on w?*(B) .

Remark — Unlike the ARMA  analysis we may note that: i) invertibility and sta-

tionarity are Znterdependent since they require common conditions on the 6ij(B);
ii) the stability of w*(B), i.e. on the determinant, is not a sufficient condi-
tion of stationarity . Note also that although 6*(B)=E¢§ Gij(B) (if the 6ij(B)

are prime) it is not possible to establish disaggregate conditions on the w..(B)
13

to ensure the stability of w*(B) .

o

(Structural Identification) — Let z, - TFS ; then the factorization (2.2b) of
the covariance functions matrix T(B)={Yij(B)} is uniquely identified if :

i) [@ij(B),Gij(B)] ¥ ij, [ei(B),¢i(B)] ¥ 1, are relatively prime by pair j
ii) the stability conditions (2.3) hold ;

iii) [csij(o)=¢i(o)=ei(o)=1 , w,.(o)=

w..(0)] 3 di.e. ¥=V', % = Diag
iJ Ji o

e}

Having Vii(B)=1 ¥ 1, the polynomials Evi1(B) oo vim(B),wi(B)] are relati-
vely prime by row, hence, under the i)condition, the matrices [T -V(B)], ¥(B)
are left coprime. This means that their only admissible greatest common left di
visor is a unimodular matrix U(B) (see Hannan(1969). Now since by definition
U(B) is linear and Det U(B) is constant, the diagonality of ¥(B) involves

U(B) = ﬁ', constant and diagonal .

About the ii)condition, we note that any system matrix W(B)=%(B)H(B)Q , with
E(B)=Diag[ﬁi(B)/hi(F)] and @ orthogonal, also satisfies the factorization of
I'(B) because H(B)QR'H(F)=I . The matrices H(B) however, cannot enjoy both
(2.3a), (2.3b) ; indeed, if hi(B) has roots in [B|>1 , hi(F) must have roots in
|B|<1 . The sole admissible H(B) is then U, but the conditions in iii) re-
strict Q=I[31=]I uniquely .

Finally the specification VO='W5 and/or ¥, = Wé, is identified because assu

ming Ek: ©® k#o and I= I, we would have To: ?O Wé , thus %O=VT6=P/ﬁ P', which

is positive definite and symmetrical



Remark - Note that since by linearization a TFS corresponds to a canonical
ARMA ~form with ®(B) diagonal the condition Rank[@p,eé]=n1,0f Hannan( 1969 ,
is not required here .

The realizability of the TFS-representation is ensured by the multivariate

spectral factorization theorem of Rozanov(1967)p.4t7, extended by Hannan(1979).

(Rational Realization) — Let T(e'iw),Ew<w<n],an m-m matrix, hermitian, positive
definite, rational and integrable. Then an m-m matriz ¥(z), rational, non-sin
gular, analytic in |z|<1 , ewists such that : T(e~tw)= g(e™tw) glotiw)’

(The factorization is unique if ¥(z)~' <s analytic in lz| <1 and ¥(o)=¥(0)")

Looking at T(e”1%)as the spectral density of {%t}, and since by gaussianity
{%t} is completely characterized by I'(2) , the theorem provides the basis for
the existence and the uniqueness of the TFS-representation in the form (2.2a).
More precisely, since ¥(2) has the meaning of /ﬁ(z), by the continuity of
T(z) in 2 and {%t} definite in variance, we have limz+o/ﬁ(z) =V%O<iw, which
implies that YT(z) is holomorphic in a circular neighbourhood of (z=0) (see
Saks~Zygmund(1971)p.145). VT(z) then admits a one-sided power expansion VT(z)=
Z:;O szk , that by ergodicity of {%t} converges in |#4<1 and so defines a fun-

ction ¥(2) which is analytic there .
Otherwise, in order that vYT(z) be holomorphic in an annulus a<z<a™t, o<a<i,
and so two-sided expansible there, the above limit (/ﬁo) should not exist (see

Saks~Zygmund(1971)p.14k). A condition clearly pathological for the process

{%t} » but often implicitly assumed .

Remark — The Rozanov' theorem is usually used to maintain the realizability of
a general ARMA, representation (see Hannan(1969, 1979)). In that context, how-
ever, the existence of the further factorization ¥(z)=@(z) '®(z) , with &(z’
®(z) mem linear and non-singular, should be required. Now, assuming ¥(z) =
{aij(Z)/bij(z)}, a necessary condition becomes b, . (z)=|®(z)| ¥iJ, which is not

1J

admissible if the b, (z) are different or the [a. (z), bij(z)J are prime
1] 1d

(2.2) Realization of TFS

Given the realization H(z) =vI(2)" ! and the associated rational AR-representsz

tion (RARm)



(RAR,) MB)%t=et d et~1mﬁo,mﬁ)

n(B) = [1[—2;1 kak] =[1- m, ()]

to rise a TFS-structure , the rational matrix W (z) must be factorizable as
m(z)= [1- v(z)] m(z) ,  1d(z)= ¥(z)7}

Now, letting M(z) =[ﬁ(z) - ¥W(z)] , where M(z) is the matrix formed with the
principal diagonal of M(z), the factorization may be proved with the arguments

of the polynomial orthogonality, and more generally with the following results.

(Orthogonal Projector) — Let 7 RAR, , stable and identified; then MI(B) sati-

sfying I !l]mk[l <=, is idempotent and self-adjoint : W, (B) =N, (F)'=m, (B)? .

Geometrical Approach - By definition an orthogonal projector is a linear
operator that splits the space of definition in two orthogonal subspaces. Thus,
let 7 (t) be the Hilbert space formed by the closure in mean square convergence
of the linear manifold generated by {zt_k} , with inner product ((Zt’ zs))=

_

E(%t z ) ; and let D(t) be the orthogonal complement of H™(t-1) in H~(t).
S

Now, ®,(B) is a linear transformation on H (%) such that

3l e g e T R e W

] ¥ Zt
[T - Ml(B)J Z = ( zZ, - %t—T ) = e, e D{t)

in fact ((et, ))=o0, k>0, and D(t) is generated by e, itself . Therefore,

7

t-k
I, (B) is the orthogonal projector of H™(t) on R(W,)=H"(t-1) along N(m,)=D(t).
The self-adjoint property follows because N(z) *=vT(z)= P(z)vVA(z) Pz 1)

which is hermitian. The idempotency of H, (B) (or that of H(B)), due to H (t-1)

N D(t)=0¢ (see Rao-Mitra(1971)p.109), follows by

(e , =z

2 T )= Bz [T0(F)'] m (B)z_ )= o0

It assumes the operative meaning
I(Bfz = H(B) e = & , E(eé &
that is allowed by the assumption that I(B) is stable

Analytic Approach - This approach relates to the proverties of the anz-

lytic functions (see Saks-Zygmund(1971)pp.1k3-147). Suppose {%t} to have a rz-



tional spectral density r(z) Z{Y7j(2)} . By rationality each yij(z) belongs to
i

the class of meromorphic functions, i.e. functions that cannot admit Laurent

(two-sided) expansions on the entire closed plane ¢ . Thus in z=0 we can define

only a Taylor (one-sided) expansion which converges to a function ¥(z) analytic
2.4 ri(z)=z: rz -— %(z
(2.4) ()k . (z)

This holds for each z € ¢ (by a shift of the origin), except at the poles 3. .
1J
of multiplicity mis where, however, we do not have a two-sided expansion

o n k
8) = -~ 5. .
r(z) e ]I“k(z 1J)
ij
Now, from the multivariate spectral factorization theorem, if I'(z) is bounded

and non-negative definite, we must have

(2.5) r(emi®) =¥(e71) w(e*ie)' — 1 7 ' evitk

in practice a two-sided expansion.

Thus, for z=e 1% the reconciliation of (2.4), (2.5) clearly requires
¥(z)= ¥(z)%= w(z™1)'
and the second order stationarity may be defined by construction as

T(z)= ¥(z)+ ¥(z71) - ¥(o)

Algebraic Approach - With conventional algebraic operators one may only
Tind quasi-idempotency ; the approach is developed in the state-space context
through the so-called "positive-real Lemma'" (see Faurre et al.(1979)pp.26-126).

Linearizing the TFS we obtain a canonical ARMA which may be cast in state-
space form :

Xt+1 = & xt-+ (5] et
¥(z)=H [2I- &]7' @

Z = Hx
t t

Reasoning, for simplicity, in the continuous, we have

I(w) = ¥(-0) ¥(w)
=@ [~wI-¢ | 'BH [wI-®] '

Since I'(w) is non-negative definite, there exists a matrix P >0 , unique solu-

tion of the matricial equation
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(2.6) P+ Po=-HH2O0

which takes on the meaning P=E(x x'). ©Now, letting

1
tt
(2.7) L'=P®
with some matrix algebra, from (2.6), (2.7) we obtain

I(w)= 0" [-wIl -8' ] {[~0T ~®' |[P+P[uwI -&]} [wI-o] l0

=L[wI-¢]'0+ @ Fer-a']! 1

¥lw)+ F(-w)'

Hence, the functions ¥(z), ¥(z) differ for the the observation matrices L, H

only, and have common system parameters @&, @ .

(TFS —~ Realization) — Let z, - RAR, , stable and identified; then H(B) admits
the factorization I(B)= [T -, (B)] [T -v (B)], where 1, (B) +V, (B) =W, (B). This
factorization yields the decomposition H (t-1) = A7 (t-1) 8 C (t-1) : the subspa—

ces of the Auto-correlated and Cross—correlated processes .
Since MI(B) is a projector, by idempotency it follows that
I (B)=H,(B)> > W, (B)=H,(B)?, v,(B)=v,(B)2, i, (B)V,(B)=v (B),(B)=0
thus, ml(B), V.(B) are themselves projectors, and the factorizations
[T-w,(8)] = [x-1,(8)][z-¥ (B)]= [x-v, (B)][T-1, (B)]

hold. As a consequence any RAR ~can be written in the sequential forms

TFS(1) x- L ifi Ty

| [1- 1, (B)] m o= e ﬁé?? e C(t-1) € H (t-1)
- T —[1[— m,(B)] z =w > m= iif\z + o

[T-v,®)]u =e iff: e A™(t=1) ¢ H(t-1)

where the first equations yield two type of projections on H (t-1) and two ty-
pes of uncorrelated processes. More precisely, if N7(t), U (t) are the subspa-

}g, {uw, 1} then

ces generated b
g v {m toilo

t-k

C(t=1)®N(t) , N (t)=N(v.)
AT(t=1) U () , U(t)=N(i,)

V. (B) decomposes H™(t)

M,(B) decomposes H (t)
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Finally, since "two projectors ﬁl, V, such that ﬁiwlz'vlﬁ1:~o form a pro-
jector W,= W+ VW, on R(WM,) =R(ii,) ®8R(V,) along Nm,) =N@L,)n N(w,)" (see Rao

Mitra(1971)p.107), it follows that
H(t=1) =A"(t-1) 8 C(t-1), D(t)=U(t)n N (t)
H7(t) =A"(t-1) ®#C (t-1) ®D(t)
that is D(t) is a splitting subspace for U (t), N (t) in H (1),

Remark — Although it is very sensible to filter {%t+ et} seguentially, starting
with the univariate ARMA models M(B) , from the works of Haugh-Box(1977),Granger
—Newbold(1977)p.231;,the representation TFS(2) would not be admissible because
by the covariance properties of the system,a proceSS<fut} with ACV=0, CCV=0

could never be generated :

r (s)= [T-v.B®) ' [1-v ()] = yuiui(B) zofli

i.e. ACV(u)=0. A process like {mt} might then be defined only by rewriting the

second equation of TFS(2) as

s —\Y/’I(B)]utﬂﬁ’(B)e > tr{[T-v,(B)] Y ¥(B)x¥(F) [T-v,(F)] !} =¢

i
which, however, contradicts the first equation and yields overparametrization .
In reality this situation might depend on the underlying MA-representation
w=[T-v (B)] e (of explosive degree I J r..), and we may ask ourselves
t 1 7 12) 1]
i) Has this algebraic decomposition sense from a stochastic point of view ?

ii) Does a parsimonious MA-representation exist, consistent with the TFS(2) ?

We try to answer in the next section. WNow we consider the following example.

Example - Let {x ,yt} be a zero mean process with covariances E(x y Je=a and
t

t7t-h

E(ytxt_k)¢~8 . The TFS~representation and its MA-decomposition are then
Co hl

( 1 -th x 1 | a } X 1 1 +aB 1 a

L tJ: &) tf: . 4

+BB 1 v e | 7 v -8B 1 J e

L JLt L7t t)L Lt

Indeed, multiplying on the left the first system by Z=Diag]&£_h,xt_k] and ta-

king expectation, we obtain the assumed covariances; for the second system we

have

)J [ o)
)] -8

£ =E[(a + -
(v, ) [(at e, yile  Ba,

B X =F - a +oe
(ryx, ) [(et Ba e oo
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Owing to the equivalence CCV = PCCV, this situation indicates that an "alge-

braic decomposition" cannot take place here .

(2.3) Decomposition of TFS
The questions asked above require that a non-algebraic solution be sought for.

(TFS Decomposition) - Let zct~ TFS(2) stable and identified ; then its inversion
reduces to the rational moving average (RM.Am) structure :
(2.8) zt=[_j[+‘]1’ _]1111

5 z = [I+@1(B)+VI(B)] e (RMAm)
ut= [I+W1 )] et

The first equation is immediate. As for the second, the proof may follow two

approaches in which, treating the simultaneous causality later on, we assume L=3

)

Deterministic Approach -Since W, (B) is a projector we have

i . i . L - | .
(£ _ vB)=(z wB)Y = wsvp =vyrys="3" I
k=1 &k k=1 k 1 J J 1 0 1#]

by which the factorization of the filter [][ —VI(B)J easily follows

(2.9) [T-z

k % K k
A = nk:1[1[—ka = [I—ka] _

The last expression enables to filter {ut—* e } sequentially as

1

( '
(][—W/'TB)ut:ut R E(t t1)~o
(T - vng) ui1)= még) , E(uég) igg')- 0
(1 - VkBk) e )mik) . E(u,ik)uikj') = 0 J=k
(w®y Te_, (e

Now, under stability, the second equation of the TFS(2) can be inverted as

W, = [T+ w,(B)] e, , W,(B) analytic in |B|<1

where, since [T +WI1(B)] is the inverse of a projector it is idempotent. Hence

% k
(2.10) [Jz+z:k:1 WkB_] [T+ WJB_Ik1

il (1 +IWBk) (k=1) _ e(k) e @
= o 0 % B ’ ttk b
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Finally, having [T+ W, (B)]J[T- v,(B)]=1T, from (2.9),(2.10) we obtain
k k
[+ WkB][I—WkBj=I > W = +V ¥ k
by equating products of matrices corresponding to same powers of B .

Stochastic Approach - Under the general stationary condition cI <I(z)<Ic™
o<c <1 (that is, if the spectral density of {Zt} is positive definite and boun

ded everywhere); Wiener-Masani(1958)p.119 showed that H (t-1) =Z:_1® H(t-x) ,

with H(t-k) the subspace of dimension one generated by (zt_k). If moreover {zt}
is purely non-deterministic, i.e. H(-») =@ , it is well known that H (t-1) =

Zk=1 80(t-k) , with D(t-k) of dimension one and generated by et—ﬁzzt—k-%t—k~1'

The question that consequently arises is : When may we have H(t-k)= D(t-k), i.

e. when are the bases {z_  },, {e, .1}, exchangeable in H (t-1) 1

t-k t-k
In the following treatment this seems to be the case whenever {Zt}z{ut}’ for

the general reason that for whitened series the equivalence CCV = PCCV holds .
k .
In the product Hk [I-—VkB ] the arrangement of the linear factors may be any
how, and we can isolate the k-th CCV-state of {mt} as

g o ()
e o) (),
(k) e -

(
=W +
e K - €

=0 J=zk
. . (k)
Multiplying the above on the right by Amt—k

) Ny o 2 )
g B 0 Y By Tl = M

, and taking expectation we find
E(u

: (k)
The MA - representation of {1111.t } consequently must be

k
m% —[:I-+ VkB J et

since by substituting it in the expectation we satisfy

El(e + + 7 '"T=v x r (k) « W
‘-(et Ty Moy Toe, o 0] p e > T (E) =W

Finally, since the above holds for each k and for the whitened series CCV = PCCV,

we have @
r (B)=[z

k o ke
" - }I“m(k)BJ x [Zk=o ka] = [ T+v,(B)]

A result that agrees with the covariance properties of (2.8) since from it

r (B)= [(x+v,(B)]E [1+v (F)]= [1+37,(B)]E = [T+V (B)]
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because V,(B) is idempotent, self-adjoint and £ is diagonal.
From another point of view, the exchangeability of the bases {ut_k},{ e _

is admissible if they have the same cov—relgtionships with (mt) : ECmtut_k)=

E(we' ), i.e. T (k) «W . Now, having T (k) « V. , the condition for exchan-
t t-k w k u k
ing beco W=V .
ging becomes W, :
To complete the proof of (2.8), from the orthogonality of I,(B) and V,(B), it

B) and V,(B), in fact
B) = ¥(B B) v, (B)

easily follows the orthogonality of ¥,(B
(B

¥

m(B) v,(B) = v,
Remarks ~ These results seem acceptable also in view of the following notes :
i) under stability we may write, at least approximately, [I Zkka_]S Hk[ I—WkB%]
in any case these filters tend to have the same statistical performance ;
ii) the RMA  representation Zt=E@(B)+V(BIJet is parametrically equivalent to its
corresponding RAR [ﬁ ]Z = p & This property is consistent with the univa
riate analysis and implies that the two models are estimable with the same pseu-
dolinear regression algorithm .
iii) The requirement 'trEM(B)==constant, that is ACV(u)=0, is satisfied, where,
in fact, {ut} may be obtained in the first step by filtering {Zt} with the uni-
variate ARMA models of the individul series {Zit} 1i=1,2 ... m .

iv) Consistently with the interdependence between stationarity and invertibili-

ty in the TFS, the general conditions of stability reduce to
[6..(B),¢,(B),ei(B)]¢o, ]wij(B)]<oo in  |Blg1 ¥ij

Note that since these are completely disaggregate, it becomes possible to iden-
tify and control the specific linear factors, or roots, that cause instability

in the system .

(TFS Factorization) - Let z, - TFS(1) stable and identified ; then the univa
riate-unidirectional expressions of the covariance functions hold :

Y. .(B) = v . (B)y,.(B), .. (B) =y (B)y, (F)

iy il i1 11 1 1

Evidence of the result arise in two context. From the previous theory we have

T(B) = [ I+¥, (B)+V (B)] L [T+¥, (F)+v!(F)]

[ o+, (B)+v, (B)] & [1+v}(F)] [ 1+% (F)]
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[ m+¥,(B)+ 37, (B)] £ [ T+¥,(F)]
[ 1+ 3V, (B)]E [1+¥,(B)] [ 1+¥,(F)]

r(B) « [ T+v,;(B)] ¥(B) ¥(F)

In practical terms, treating the TFS(1) by rows,from [T-w(B)] = n as in

Box-Jenkins(1970)p.k15, we obtain the equations

- r — — —_

FYM(B) Y”(B) Y12(B) Ym(B) Vi1(B)
Yig(B) _ Y21(B) : viE(B)
_Yi;n<B>J —ij(B) Ymm(B)J _-Vim(B)_J
i.e. v.(B) = r..(B) w.(B) i=1,2 ... m
1 11 1

Now, solving for Wi(B) by applying stochastic approximation arguments to the
linear regression (see Tsypkin(1971)p.65), we may diagonalize Tii(B), obtaining
Yij(B)Eyii(B)Vij(B). The second expression follows by nt==@(B),¢£’assuming
ACV(m) = ACV(z) .

Remark — These expressions can at Least be accepted as approximations of the #rue
algebraic ones, and used in the early phase of identification in which only a
general idea of the system is required. Here, they enable the complex dynamic
relationships inside a TFS to be disaggregated and the Box—Jenkiné schemes to
be applied . Good results can clearly be gained for moderately correlated time

series ; in this case prewhitenig procedures may also be avoided .

The extension of the analysis in presence of simultaneous correlation is

straightforward. Suppose I >0, by normalizing and developing we have

=1 [y_ = A1
a7t (1 11111(13)]%G VE e,

(1-v,) [T-v,(B)] [ 1~1,(8B)] z = a

w k o " I

‘ (1 -v,) [J[——zk=1vk}3j u = (I VO)Hk=1[I kaj w = oa
from which . K o - k - K
[I-zk:oka T+ (z, ¥ B) = szo[I—VkB_]

Now, by the formal relationships between multiplicative and additive forms
the projectors, uniqueness of the projections on the same past events, struc-
tural properties of the cross projectors (tr V(B)=0), and since Vv, eD(t),

V., (B) € H (t~1), we must have Vovk= @k: © ¥k. Thus, (I-V¥,) is a projector.
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3. ESTIMATION Of TFS

The paper ends with an empirical comparison of the statistical performance of
TFS and ARMA, models, applied to 5 real time series. In the present situation
computer packages for the joint-estimation of simultaneous transfer functions
equations are not available S moreover, existing packages for the
ARMA ) have serious problems of convergence, initial values, and in many cases,
when m>2, they are not able to estimate even ARm models .

For both the models we now suggest approximate methods of estimation,
easily implementable on Fortran programs. These algorithms, multivariate and
iterative extensions of the recursive pseudolinear regression (R-PLR, see Solo
(1981), Ljung-Sdderstrdm(1983), for the ARMAX model), are asymptotically effi-
cient and, under the assumption of passivity for the monic polynomials of the

system, they are strongly consistent

(8.1) Pseudolinear Estimation of TFS

Given the univariate-orthogonal structure of the residuals, the TFS may be ini-
tially estimated, without loss of efficiency and consistency, by rows, through
non-linear least squares technics (NLS,see Box-Jenkins(1970)p.391).

For the i-th equation, assuming common orders p,q,r,s,b, we have

(I-NLS) B (ee1) =8 () + [30_ &5 (&} (0)]7'r]_ €5 (104 (k)
= [ m a
&E,it(fﬂ) = Bait(iﬂ%)/a B, ait(@%) =ﬂi(B)[Zit_zj¢ivij(B)th—bJ
85 <[, (1)00085 (2),mug (0)eevwg (8),0neimg (5)505(1) .. 05(p). .05 (q)]

To derive a useful expression fo the gradient we define the auxiliary variables
cs = w, . (B §..(B . . =18 (B d)B .
Vit [le( )/ 13( )] Ziy nj, [ ;(B)/e.( )] ai,

now, it is not difficult to show that

aait(ﬁa)/aaij<h)=~[ni(B)/@iJ.(B)] LEE TS h=1,2 ... r
. (5] aait(r@)/awij(h)= [wi(B>/csij(B)] 23 o h=0,1 ... s
-t Bait(ﬁ)/aqbi(h) = —[1/ei(B)] Diep h=1,2 ... p
ba; (B)/30,(n) = [1/8.(B)] ai h=1,2 ... g
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The computation of the gradient thus consists in a filtefing operation on_obseg.
vable, auxiliary and non-observable quantities. Note that in the case of polyno

mial orthogonality ﬂi(B)/éij(B) 21/6ij(B), the calculation of the first two deri
vatives simplifies considerably.

The computation of the residual {ait} is carried out in 3 steps

g S . g

1 o= 588 (h)w.e. - % )z =(1,2 .. m)=
DT Py Sy - T 0 5 B3 e 3=(1,2 . m)=d
2) .= __Zm I

Pig T Pig T %5 1 Vi

P q

o= oot nn;. .+ IX 6. (h)a

3 ey =g T by (ndng e Ty O (e

Recomposing the 3 steps, we may rewrite the model in pseudolinear form as

m ' . i '
. = P — B . _@ . )
i T Tyt O iaer "9 Biey) T M T ) by
t '—
Wijt‘"'l_.[wijt—‘] .o WlJt—l’] s [61J(1) Nems (SlJ(r)] = (B:LJ
L =1
ZJt——b - [Z'Jt—b th_b_s_] s [: U):LJ (O) g . wlj(S)J - am)lJ
yit(ﬁ) - : | @l
Iﬂlit—‘] = [nit_1 ni.t_pJ EH Ld)i( 1) v e Cbi(p)] - #)i
1 '_
81y 4 —[éit—1 o o ait—é] s [ei(1) “ee ei(q)] = ai
1
(310 ag = 8y (B) + g (8)

where yit(ﬁ) 1s the vector of pseudolinear regressors .

The pseudolinear estimator arises from the non-linear one by approximating

12

(k) = g, (k)

(3.2) £ iy

1
i.e. by avoiding the filtering with ﬂi(B)/6,,(B) and 1/6,(B). Moreover since
iJ i

éit(k) = g, = Bi(k) y?it(k)

the iterative pseudolinear regression (I-PLR) algorithm reduces to

N n ~ At '_1 n ~
T-PLR : = : : % . (k) z.
( ) B, (+1) [zt=1 i, ()7, (k) eoq Fig (k) g,

This algorithm also arises as OLS-estimator in the pseudolinear model (3.1),
the substantial step is however the approximation (3.2). It is the goodness of
this approximation that influences the statistical properties of the I-PLR. Ge-
neralizing the analysis developed by ljung-S&derstrdm(1983)Chap.k4, for the recur
sive estimation of ARMAX models, we may conclude that the algorithm is strongly

consistent if the monic polynomials of the gystem are strictly passive :
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| ¢.(z)/0.(2)6. (2) -3 ]>0 . lzlst wigd
1 i 1] :

note that only for first order polynomials do these coincides with the stability.
The philosophy of pseudolinearity may also be used to get good initial values

@i(o) : by means of a set of linear regression we obtain the estimates

1) 2 2
a . =g { —_ . = & 0 0
Do miy T m L T Ry Py > 834000, 6, (0)
(3.3) - y (2) N
. Zit:: ui%%t51 + iy > eit<0)
1 3 1t A ~ ~
L = : - . ] 0 (0
Pig T #5Bioog T 8:%ip g Uiy > #;00), 8,(0)

In the second step we first generete a white noise process {eit}’ through an auto
regression of order g> (p+q) ; the ARMA parameters are then estimated with a

pseudolinear regression.

A second I-PLR algorithm arises by writing the system in simplified AR-form

by means of the polynomial orthogonal approximation :

: ; m
1-th row B)z: =12 ..(B) z- + a.-
mB)zi = Ty V(B Bt ey
u;, = 1%, W + a;
o j=i 1t 1

From the auxiliary variable uit: ﬂi(B)zit (which corresponds to an ARMA resi-

dual) the computation of {ait} again follows a 3 steps procedures with the first

step equal to the previous one

P
2! u: = z: - 7 h)z: + 3 6.(h)u:
) ip = Zig T By ogMzg oz 6 (huy
= . - ! . + @)! o
2iy T # Bip g 3 Mgy
31) a: = us - @ L.,
S

Recomposing the 3 steps the associated second pseudo-linear equation is

1l
[ae]

) + (¢l=z.

m '
“ o g i%ig-

A8 Wy s -w! % . -0 lu; + g
g J=i iy It 1JZ1Jt—b i lt—1)

it
= fﬁ’)j'_ }?'it“B) + ait(B)

Since the gradient in this form takes the structure

Bait(ﬁ)/adij(h) =-[1/5ij(B)] LET T
Bait(ﬁ)/awij(hJ = [T/Gij(B)] 7 :

£; (8) o b
1
© o\ vas, (8)/96, (n) --[1/8,(B)] =g,
Bait(ﬁ)/aei(h) = [1/ei(B)] ug,
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a second pseudolinear estimator (and with minor assumptions) is realizable .

Unlike the former, the two subvectors of regressors

"y 1 1 1 .
[Wijt~1’ 5] [=2dy uip ] ¥
are not stochastically independent, so the estimates v(B),J(B) are not asymptoti

cally independent. From a computational point of view, however, the subvectors

contain only two pseudolinear quantities {Wijt’
dently from the observable processes {th’ Zit} .

In presence of simultaneous causality and assuming the specification v,=0, i.

uit} which are filtered indepen

e. w.j(O)=O ¥ 1j, we may define an efficient system-estimator through a seemin-
i

gly-unrelated structure as

L 1ot 1 [ ! ! Tyt
3 —[@1 B @m.], 8 [@M w!oe. w! $! @i]
= > | B B . .
W—Dlag[Y1 X, ...Yfm] , Yi-[yl1 i, ...yln]
T t ' ' " — . . .. .
Z = [21 CONER Zm] s s [211 Zi, - Zlﬁ]

B+ 1)= {W(x) " [E(k) 1] (k) ) W (k) '[£(x) 1] 2

(3.2)  Pseudolinear Estimation of ARMA,

The pseudolinear estimation of ARMA; models, has already been considered by
Spliid(1983). His work however, does not provide a realization framework for
the algorithm and his analysis of the statistical properties seems incomplete.

Since an ARMA, (p,q) can be recast in a canonical ARMAM(1,1) form, with M=[m-

max(p,q)], we consider, without loss of generality, the estimation of

Let B =Véc[ﬁ5@] and define the multivariate expansion

ti2

e (B)

. E'(&%)(B—é)+et(@)
é(rﬂ%)

t
[Bet(ﬁ)/86'={aeit((3)/96j }]m.

It

3]

om?
the corresponding iterative non-linear least squares estimator is

B(x+1) =B(k) + [zizTE?t(k)ﬁJ;(k)]‘l zf:ﬂét(k) e, (x)

Now, using @t:=®(B)'l®(B) Z,, & generic row of Et is given by
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% (8)/26, =-@(B) I, . m _ = = _
gg (®) t 1J 1] t-1 t-1

I

9 30..= 8(B)"' J.. e : e
e (B)/36,.= O(B)* J,. e, £=1
where Jij is a matrix with 1 in the ij-position and O elsewhere. As before, we
may resonably approximate the gradient with input-output processes. For an MAm(1)
model, h 1a ! o= ces =K' and the matri £

, however, we would have ] [et_1,et_1 et_1] £ 0 rix o
squared regressors {}tEtE;] , to be inverted in the estimator, is singular.

We may solve the problem by considering another form of expansion that works

directly on the approximate gradient (pseudolinear regressors). It is

11

o
B
e, (B) %

Wé(@)( B-B) +e'(B)
B'=[8,0] , y'B)=[z' ,-e’
[s.6] v (B) ==z e _,(B)]
moreover having

éé(k) =z, - ﬁf{_}(k) B(x)

the I-PLR estimator of the ARMAm(1,1) reduces to

— a _ yH & Ly -1,0 & '
(I-PLR) B(k+1) = [zt=1 yt(k)yt(k)] T yt(k) =

Generalizing the analysis of Ljung-S&derstr&m(1983), we may state that this

algorithm is consistent if @(23)_1 is passive :
| @(z) " - 11 |>0 , |z|=t

Notice that since Det ®(B) has degree (m®q), the condition is not easy to sati
sfy for (m,q)>2 . A simple necessary condition for the above is however provi-

ded by the passivity of the monic polynomials eifB) on the principal diagonal.

Finally, in presence of simultaneous correlation, an efficient system-estima
tor, which also yields a joint estimation of all the regression coefficients
(2,0 ,%) is given by the seemingly unrelated structure
v ]

B = Vec [B'] R ¥'= [yﬁ, ¥, e ¥,

- - c Sy B [ & - -1 > 111 (5 S w1 S -1 -1
. {[r, wkj [»:k® _Il_n] [Im®'i’(k_]} [Imgykj L)}:k® JIn_l z

This structure is justified by the fact that each row-equation of the ARMA_ has

the same set of pseudolinear regressors y&(E)
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4. EMPIRICAL COMPARISONS Of TFS - ARMAp,

The: economic problem considered for the empirical comparisons is the analysis

of the foreign sources of the price inflation in Italy. We define 5 varisbles :

$ = exchange rate Lira/Dollar ,

PT = ISTAT index of wholesale prices ,

PX = 1 o on export " . t = monthly data 1973.1 - 1985.12
PM= w nw  import 0 s

B = balance of foreign trade ,

(4.1) Serial Correlation Analysis

All the processes graphically have evidenced components of trends. The analysis
of the variances and of the correlograms on differenced series shows that statio
narity may be reached with a differentiation of order one for all the variables.
The plots of the sample correlation functions are reported in Figure 1 and 2.
Here, we may note the high simultaneous correlation of the prices due to the
fact PX and PM are the prices of the exported and imported goods, so that PI,PX,
PM are synonymous. The processes (-T—B)PIt and (1—B)Bt, again exhibit a conside
rable autocorrelation (of AR(1) and MA(1) type) , while the other series are
practically white noises. To identify the functions 'vij(B), an analysis on:
prevhitened series is suggested ; the corresponding univariate filters are :

(1+.621B)(1-B) PIt = pi

(.065) t

(1-B) B, = (1-.763B) b,
: (.053)

The cross correlograms computed on the prewhitened series are reported in Fi
gure 3 . Here, we can get an empirical evidence of what was said in the intro-
duction about identification and polynomial orthogonality : since (T—B)Bt~ MA(1)
and b>0, the CCRF(B,PM) does not change after prevhitening ;  the same is not

true for the CCRF(PI,PM) because (1~B)PIt~ AR(1) and b=0 .

(4.2) Identification, Estimation of ARMA 5

The identification strategies of the ARMAm, see Tiao-Box(1981), Jenkins—ﬁiavi(19
81), are consequent on the genesis of the structure of that model .

As we said, the multivariate spectral factorization theorem does not ensure
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Functions (Differenced Series)

FIG. 1 - BSample Cross Correlation
LAG
$«PI $+PX $+PM $+B PI«PX ©PI+PM PI+B PX+«PM PX<«B PM+B
~20 0.00 0.03 -0.01 0.04 0.12' 0.09 0.00 0.07 -0.03 0.02
“19  -0.01 0,00 0.04 0.04 -0.01 0.04 0.02 -0.07 -0.05 . 0.06
-18 0.08° 0,06 -0.05 -0.10 0.11 -0.12 0.00 -0.01 0.02 -0.01
-17 0.13 0.14 -0.09 -0.02 0.08 0.05 . -0.02 0.15 -0.03 -0.03
-16 0.14 09.01 0.05 0.03 -0.02 -0.10 -0.03 -0.25 -0.01 -0.08
-15 0.05 0.04 -0.01 -0.01 -0.04 0.05 0.08 0.06 -0.09 -0.07
-14 0.05 0.05 0.1z 0.12 0.09 0.05, 0.02 0.06 0.10 0.21
-13 0.14  0.20 0.02 -0.09 0.05| 0.10 —g.11 0.06 0.15 -0.09
-12 0.14 0.18 0.12 -0.02 -0.06'-0.09 —-p.05 0.13 -0.18 0.11
-11 0.10 -0.24 0.00 0.10 -0.11 -0.04 0.06 0.06 -0.02 =-0.18
-10 0.04 -0.03 ¢0.12 -0.10 -0.06 -0.05 ¢. 0] -0.03 0.01 0.05.
"9 -0.01 -0.02 -0.16 -0.07 0.0l -0.02 0.01 -0.24 0.00 =-0.05
-8 0.06 0.07 -0.04 0.17 0.09 0.16 _0.01 0. 29, 0.02 0.15
-7 0.04 -0.10 0.00 -0.02 0.09 0.05 (.02 -0.04"' 0.03 -0.06
-6 0.01 0.06 0.11 0.13 0.04 0.03 0.04 0.09 0.02 =0.05
-5 0.02 -0.07 0.10 -0.11  0.07  0.07 _g. 12 -0.08 -0.02 0.0l
-4 0.06 -0.01 -0.09 -0.26 0.02 -0.01 -0.04 .10 -0.14 -0.20
-3 0.05 -0.05 -0.04 0.10 0.10 0.20 0.11 -p.01 -0.05 0.13
= 0.08 0.01 0.12 0.07 0.25 0.22 -0.12 g¢.11 0.11 -0.10
-1 0.07  0.03 0.00 -0.11 0.25 0.27 -0.08 0.04 0.02 0.26
0 0.34 0.35 0.26 0.11 0.38 0.31 -0.09 0.26 o0.02 -0.14
1 0.45 0.27 0.25 -0.08 0.08 0.24 -0.05 0.15 -0.05 -0.22
2 0.24 0.18 0.22 0.01 0.10. 0.16 (.05 0.08 -0.02 0.10:
3 0.23 -0.03 0.04 -0.02 o0.181 0.13 —-0.02 0.0l -0.02  -0.05
9 0.09 0.00 0.06 0.02 o0.11 0.08 0.10 -0.01 0.07 0.23:
5 0.10 0.05 0.00 0.13 0.06 0.03 0,03 0.07 -0.19 -0.10,
6 0.08  0.10 0.04 -0.10 0.02 -0.06 (.05 -0.15 0.28 0.01°
7 0.07 -0.02 -0.07 0.10 0.05 0.08 _g.03 0.21 0.00 0.0L
8 0.14  0.03 0.03 0.04 0.02 0.0l _g.13 -0.06 -0.19 -0.06"
9 0.04 0,13 -0.01 -0.15 0.01 -0.07 (.05 -0.06 0.02 -0.11
10 -0.07 9,01 -0.11 0.04 0.09 0.03 .01 -0.06 -0.01 0.20'
11 -0.10 -0.07 -p.08 0.09°  0.04 0.0l 0.03 -0.02 0.22 -0.02°
12 -0.14 "-0.01 -0.06 0.06 0.14 0.07 _g o7 0.10 -0.11 -0.03:
13 -0.10 -0.02 -¢.05 -0.04 -0.10 =0.02 -0.02 -0.09 -0.08 -0.04
14 0.00 -0.05 -0.10 -0.04 0.02 0.03 g g2 0.04 0.09 0.06°
15 0.02  0.10 -0.05 0.05 0.03 -0.01 (. g4 -0.02 0.04 0.01,
J6 ~0.06 0.01 .10 0.03 0.03 0.09 0.01 0.03 -0.18 -0.08"
17 0.02 -0.03 0.01 -0.10 -0.04 =0.0l 02 0.04 0. .11 0.01
18 + 0.00 -0.06 -0.02 -0.14 0.01 -0.01 ¢ og 0.07 -0.04 0.06'
19 1 0.04 -0.06 -0.07 0.11 -0.06 0.06 -0.06 0.01 -0.06 0.13;
20 -0.04 -0.08 -0.06 0.08 -0.04 -0.06 (.02 -0.09 0.24 -0.19
$>PI $+PX $-+PM $>B  PI+PX PI+PM PI+B PX-PM PX—+B PM>B
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FIG. 2' -~ Sample Autocorrelation Functions (Differnced Series)

LAG
’ 5 PI PX PM B

0 1.00 1.00 1.00 1.00 1.00
1 0.24 0.62 -0.16 -0.09 -0.38
2 0.07 0.41 -0.02 0.08 -0.11
3 0.05 0.28 0.0l -0.18 0.07
4 0.08 0.23 0.04 ¢.04 =-0.09
5 0.12 0.20 0.00 0.09 0.08
6 0.00 0.14 0.11 o¢.12 -0.11
7 0.01 0.11 -0.01 ¢.14 =-0.04
8 0.06 0.09 -0.03 -90.18 0.16
$ -0.05 0.00 -0.04 -p.04 ©0.02
10 -0.06 -0.03 0.04 -9.12 -0.21
11 -0.13 0.00 -0.10 g.i5 0.03
12 -0.06 0.08 0.09 g¢.,j0 0.21
13 0.05 0.02 0.03 -p.06 =0.07
14 0.14 0.01 0.07 -9.05 0.00
15 0.03 -0.04 -0.01 -p.03 =-0.12
16 0.08 -0.01 0.00 0.06 0.l4
17 -0.03 0.00 0.05 -0.02 -0.01
18 0.02 0.02 -0.05 0.12 -0.1%
19 -0.03 0.00 ©0.04 -0.05 0.05
20 -0.03 0.04 0.0 -0.04 0.06

LAG
$epi $«<b Pi+DpX piepn pi«b px+b om+b

-20 0.01 0.06 0.16 0.08 -0.01 0.01 0.01
-19 -0.01 0.10 =-0.10 0.15 0.01 -0.04 0.07
-18 0.11  _p. 04 0.07 -0.20 0.02 -0.01 0.04
-17 0.11  _p 96 0.12 0.14 0.03 -0.04 -0.01
-16 0.07 _p.01 0.0l -0.16 -0.10 -0.04 -0.10
-15 -0.05 _p.03 =-0.12 0.02 0.02 -0.13 -0.16
-4 0.03 0.12 0.08 -0.02 0.17 0.02 0.12
-13 0.13  _p.01 0.12 0.20 0.00 0.19 -0.01
12 0.07  _0.03 -0.01 -0.08 -g¢ 13 -0.07 0.12
-11 0.02 0.09 -0.08 -0.02 -0.01 -0.08 -g 12
-10 -0.02 -5.04 -0.10 -0.05 -p0.01 -0.05 -0.03
-9 -0.04  _9.12 -0.05 -0.1s 0.02 -0.04 -0.09
-8 0.09 0.11 0.04 0.16 -0.02 _p.9] 0.11
-7 -0.01 0.06 0.09 0.05 -0.02 0.02 0.02
-6 -0.01 0.20 -0.01 -0.01 0.13 0.04 -0.04
-5 0.01 0.01 0.07 0.10 -0.04 0.00 -0.02
-4 0.07  -0.30 -0.06 -0.17 -0.19 -0.16 -0.25
-3 0.01 -0.11 -0.06 0.08 0.13  -0.19 -0.04
-2 0.07 0.00 0.13 0.07 0.02 -0.02 -0.15%
-1 0.02  _g.14 0.02 0.11 -0.02 0.02 0.19
0 0.37 0.02 0.41 0.20 -0.11 0.04 -0.03

1 0.3l  _9.08 0.02 0.18 -0.21 -0.04 -0.28

2 -0.04  _9.06 -0.02 0.10 -0.07 -0.05 -p.10

3 0.12  _p. 08 0.14 0.10 -0.18 -0.07 -p.13

4 -0.07  _g. 04 0.09  0.08 -p.01 0.03 0.16

5 0.06 0.12 0.07 0.09 -0.01 -0.19 0.01

6 0.02  -9.02 -0.02 -0.14 0.09 0.19 0.02

7 0.04 0.10 0.05 0.09 0.14 0.14 0.03

8 0.11 0.12 0.01 0.06 -0.17 -0.12 -0.05

9 =0.05  _g.09 -0.06 -g.11 ~0.01 -0.07 -0.18
10 -0.12  _g .03 0.09 0.03 -0.01 -0.06 0.10
11 -0.09 0.09 -0.06 -0.04 0.10 0.21 0.06
12 -0.10 0.15 0.26 0.11 0.00 0.04 0.02
13 -0.02 0.07 -0.14 -0.05 -0.05 -0.06 -0.03
14 0.08 0.01 0.00 0.04 -0.06 0.06 0.05
15 0.02 0.07 0.0l -0.09 0.01 0.08 0.06
16 -0.10 0.10 0.08 0.12 0.01 -0.14 -0.05%
17 0.07 -0.03 -~0.06 0.00 -0.04 0.02 -0.02
18 -0.02  -0.19 0.06 -0.06 0.15 -0.03 0.06
19 0.05 -0.02 -~0.05 0.12 0.0l -0.09 0.20
20 -0.09 0.08 0.03 -0.04 -0.02 0.21 -0.08
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the existence of a general ARMA representation, but only of a particular cano-

nical form with one of the two matrices ®(B), ©(B) taken diagonal. Indeed, given
z = ¥(B) e , ¥(z) =v/T(z)

Hannan(1979)p.85, has only suggested as further factorization for ¥(z)={y..(z)}
1J

the least common denominator (LCD)

®(z)= T
o(z) =LCD{11)iJ.(z)} > . ,

o " 0(2)
0(z) = ¢(z)¥(z)

A less rough technic may consider a linearization by row , but the substance
of the problem remains unchanged .

The genesis of the ARMA  structure follows, then, a superficial generaliza
tion of the univariate ARMA model, and in this extension it does not consider
the different and autonomous nature of the cross—correlation with respect the
auto—correlation (in particular pij(0)¢1, pij(k)ipij(—k), b>1, and so on).

It is true that auto-relationships are more powerful and significant than
cross ones ; however, in the ARMAm context, the cross-correlation is treated

as a trivial projection of the auto-correlation. Following these considera-—

tions a coherent strategy of identification would seem to be
p=max(pi) o q=max(qi) . i=1,2 ... m

where (pi,qi) are the orders of the univariate ARMA models of the series {Zit}'
In our data we identify an ARMA5(1,1) model. The practical implementation of

the pseudolinear estimation has followed these steps :

0) Estimate an AR5(3) : @k(o) k=1,2,3
- 3 .
@ = -3 @ (0)x
enerate et(O) z L, k( )Wt—k
1) Estimate the ARMA5(1,1) N =~@(1)zat_1 +@(1)et_1(0) +et(1)
& A = -® -®(1)e 1
enerate et(1) z, (1)zt_1 ( )et_1( )

2) Estimate the ARMA5(1,1) : oz =0(2)z +@(2)e ~(1)+ét(2)

And so on ...
In a first estimation the algorithm has not converged owing to the high simulta

neous correlation, the great number of parameters to be estimated (25+25+15=75)

and the non-significance of many ¢ij’ 6... The last two situations have probably
il
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caused the non-passivity of Det®(B), although the specific fact responsible of
the divergence was 655(k) - 1.

A simplification of the model, eliminating all the non-significant coeffi-
cients (starting from the third iteration) has improved the situation. In 15
iterations, with constant stepsize (3), convergence was achieved ; results are

in Table 1 .

$t 0 0 ¢,, 0 O $t_1 6,, 0 8,3 0 © ét_1 ét
PIt 0 ¢,, 0 0 © PIt_1 O 0 0 8, O pit_1 pi
th =l 0 0 ¢, 0 O [|PX |t ]8s O 6,;, 0 O px, . |+ |px
PM 0 0 0 PM 0 0 0 8 0 m

+ ¢41 ¢“5 £—1 hh P t—-1 pmt

B 0 0 0 0 6 0O 0 6

+ $s2 b5y Bt—1 52 55 bt—1 bt
=~ — — - R — . == ) US — — —

Table 1 - ARMA, Estimates (P=¢, Q=90)

STANDARD I
PARAMETER ESTIMATE ERROR T-STATISTIC
P113 1.283722 0.6274935 2.045793
Q111 0.1296638 0.7828205E-01 1.656367
Q113 -1.695211 0.6899980 -2.456835
Pl22 0.5042209 0.5826713E-01 8.653608
Q124 0.1020208E-01 0.4063113E-02 2.510903
P133 0.3173806 0.1725847 1.838984
Q131 0.7307190E-01 0.2152783E-01 3.394300
Q133 -0.6997944 0.1898797 -3.685463
Pl41 0.1247098 0.4832006E-01 2.580912
P145 5.900188 1.651278 3.573103
Q144 -0.1600814 0.7938240E-01 -2.016586
P152 0.1302421 0.7757674E-01 1.678881
P154 -0.1083171E-01 0.2978710E-02 -3.636375
Q152 ~-0.2086790 0.9814490E-01 -2.126234
0155 -0.6660523 0.8030530E-01 -8.294002
RESIDUAL COVARIANCE MATRIX
1 2 3 4 5
1 i 832.22998 10.47000 70.06000 136.87000 0.98000
2 10.47000 0.92000 3.26000 3.79000 -0.05000
3 70.06000 3.26000 65.81000 37.96000 0.46000
4 | 136.87000 3.79000 37.96000 305.95001 -0.74000
5 | 0.98000 ~-0.05000 0.46000 -0.74000 0.44000




_2"(._.

(4.3) Identification, Estimation of TFS,

The multivariate extension given by the TFS tries to respect the different natu
re of the cross-relationships for which the Box-Jenkins methodology has provi-
ded autonomous apparatus of modeling and identification. We have shown that un
der adequate stationarity certain conditions of polynomial orthogonality ena-—
ble simplified MA-representation and spectral factorization for the TFS. With
these we have defined a disaggregate strategy of identification which directly
extends the Box~Jenkins schemes.

Reasoning on Figure 1,2,3 we have identified the model

B 3 10 1 [ T
1 0 (_wojféfngB )B1Y 0 (;f%fg;)B” 3, (1+0,B) 4
<1+ngz)B 1 0 (1:21}3")]3u b Pl (1+¢1B) Pl
(1+§2B)B weB? 1 (ijfgg)Ba 0 PX, | = (1-9,B) DX,
(1+§jB)B w,B woB” 1 (]jfghgg)B PM, (1-81B3)pmt
0 0 (?:%fgy)Bs (?nggg)B 1 B, (1-6,B) b,

many Vij(B) are at the limit of the Box-Jenkins identification but this forcing
was necessary to test the performance of the pseudolinear estimators.

In effect, for the function vzu(B) an ad-hoc search analysis (fixing all the
other coefficients) was required to find the narrow band of convergence. With-
out stepsize (3) other forced impulse response functions, as Vsq(B), diverge in
an oscillatory manner., After 7 iterations, using method (3.3) for the initial
values, convergence was achieved ; results are in Table 2.

The validity of the disaggregate identification is pointed out by the stati
stical significance of the estimates and by the fact that their signs coincide
with that expected from the analysis of the correlograms

Empirical check of the orthogonal polynomial approximation is obtained by
by means of

estimating the TFS in the simplified AR-form [H(B) - v(B)z = a,

the second pseudolinear algorithm . After 10 iterations, using as initial va-
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lues the estimates of Table 2 and, again, with an ad-hkoc search for vzu(B), we

obtained the results of Table 3 .

The defferences between the estimates of Table 2, 3 are not important; the
A A
fact that Sal(B) + 1 in Tab.2 is compensated by 613(B) + 1 in Tab.3 . . The
redundancy of  the polynomials Gij(B),e,(B)'probably lies at the origin of
i

the two situations, a simplification of the model is in order.

(4.4) Reunification of ARMA, and TFS

In the previous section many rational functions v(B) were at the limit of iden

tification. A linear modeling like vij(B)==wij(B) is more realistic and flexi

ble, and also improves the speed of convergence of the estimation algorithms.
The model that follows looks like a closed-loop system of simultaneous ARMAX

equations and provides a substantial reunification of the ARMA ,TFS structures

m
¢i(B) zit-+(zj¢i wij(B) th—b) = ei(B) aj,
(ARMAX, ) [&(B)- @(B)] m, = ®(B) &

The wij(k) coefficients are identified in the same position as the significant

cross correlations coefficients. Estimation results are given in Table k4 .

1 0 (-w;B ' +w,B1%+,B13%) 0 (—wlB‘*szs;~ ——$t
(w,B+w,B%)  (1+¢,B) 0 (-w,B"+w,B%) 0 29
(w,B+w,B?) (w,B%y,B12) o (w,B%-w,B%-w,B1®) 0 PX,
(w;B+w,B%) (w,B-w,B®) w,B” 1 (wyB-u,B*) | | BM,

0 0 (~0,B%*w,B%w,B%y,B)  (-w,B+w,B") 1 B,

-
|

- a 3

= L (1+48,8) s pi (1-8,B)px,  (1-0,B%)pm_ (1-0,8) b,
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Table 4 - ARMAX, Estimates

STANDARD ;
PARAMETER ESTIMATE ERROR T-STATISTIC
013 -0.6524838 0.2351878 -2.774310
0013 0.6553210 0.2443427 2.681974
00013 1.115592 0.2419704 4.610446
ots -5.532663 2.517155 -2.197983
00015 7.623234 2.637581 2.890236
THI . 0.2312764 0.822693BE-0L  2.811209
02] ) 0.9352731E-02 0.2562426E-02  3.649952
00021 0.5521054£-02 0.2387180E-02  2.312793.
024 -0.6987430E-02 0.3600444F-02 -1.940713
0024 0.9785057E-02 0.3682345E-02  2.657289
PH2 0.5032622 0.63)10806K-0)  7.974610
031 0.8278836E-01 0.2230689E-01  3.711336
0031 0.3819698E-01 0.2058681E-01  1.855410
032 0.8135166 0.4851935 1.676685
0032 0.6496270 0.4864492 1.335447
034 0.1144679 0.3249124E-01  3.523037
0034 -0.7307774£-01 0.3058622E-01 -2.389237
000314 -0.1005723 0.3153927E-01 -3.188797
TH3 . -0.3253419  0.8111832k-01 -4.008243
041 0.8088264E-01 0.4839224E-0L  1.671397
004) 0.7324786E-01 0.5049240E-01  1.450671
042 3.669557 1.315529 2.789416
0042 ~2.152577 1.105723 ~1.946759
0043 0.3761461 0.1563639 2.405582
045 6.491417 3.630439 3.981393
0045 -4.783293 1.608308 -2.974116
TH4 ~0.2432166  0.8285714E-01 -2.935373
053 -0.1342656E-01 0.6070171E-02 -2.211892
0053 0.2343000E-01 0.6060570E-02  3.865973
00053 -0.1855719E-01L 0.6059525E-02 -3.062482
000053 0.2264843E-01 0.6218728E-02  3.641972
054 -0.8565500E-02 0.2856343E-02 -2.998765
0054 0.6706758E-02 0.2887536E-02  2.322658
THS B ] ~0.5505129 0.8373142E-01 -6.574747
S
1 2 3 4 5
1 622.38114 6.64996 40.38554 92.76922 2.48058
2 | 6.64996 0.78331 2.32281 3.29266 -0.03725
3 40.38554 2.32281 51.31809 30.62827 0.15928
4 92.76922 3.29266 30.62827 242.55711 -1.07578
5 2.48058 -0.03725 0.15928 -1.07578 0.37412

(4.5)  Check of the Equivalence PCCV-CCV
Writing the ARMAX, system in two-stage form we have

®(B) z, = &(B) w,

I- 2(B)] u =e
[1- 8] u, =,
Now, to check empirically that the second equation admits the inversion

w, =[:I+M(B)] e, (as a consequence of the equivalence PCCV-CCV), we must show

that the estimation of the two models below provides equivalent results

* =
(ARm) u, = @(B)'mt-+ e,

It

*
(MA%) u 2(B) et e

t
The estimation of the first model yielded the results of Table 5. As for the s=
cond, after 6 iterations with stepsize 1,using as initial values the previous

estimates, we have Table 6 which is very similar to Table 5 .
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(4.6) Parametric Comparisons

Synthetic comparisons between the various models can be obtained through the
classical likelihood ratio statistic on the generalized variances. Under the
assumption that the ARMAm is a subclass of the more general TFS class (which

has uncostrained spectral density matrix), we define the statistic

O(n_, ) =1n(|g Tyg  Pey Hoyo2qq)

ARMAl TFS
where (n, ,n,) are the number of estimated residuals, and (d) the difference of
the number of parameters in the two models .

Principal results of the parametric analysis are reported in Table 7. There,
(N) is the number of parameters in the model , the (d) values in brackets are

computed on the significant estimates, finally RAR, is TFS in simplified AR-form.

Table T - Parametric Comparisons

Model | | T | n N Pair U a  x2(19)
1 ARMA, 3 9k2 899 154 15 :
2 TFS 1 731 615 " 30 g;’gi 125'3 gg) 32'5
3 RAR, 1 786 T75 " 30 (2’)4) 1 '5 ) 1 )
4 ARMAX 1 545 809 " 34 (h,S) 2‘2 (1) 22
5 ARY 1 608 769 " 34 (5’6) 114.9 (3) 11.
6 MA* 1 772 5u3 e > : .

On the basis of these results we briefly conclude that:

a) the rational TFS structure is effectively much more powerful than the linear
ARMA_ (see U(1,2)), and can be successfully identified in a disaggregate way;

b) in situations of adequate stationarity the polynomial orthogonal approxima-—
tion holds (see U(2,3);

c) the ARMAX ~reunification provides the best solution also in terms of speed
of convergence and flexibility, it belongs however to the TFS class (U(2,4));

d) as a consequence of the polynomial orthogonality, simultaneous and sequen-—
tial filtering are equivalent (see U(L,5)) ;

e) finally,for whitened series AR ~and MA_ representations tend to be exchangea
ble. That is to say that owing to the equivalence PCCV-CCV one may find & MA

representation avoiding algebraic inversion of polynomial matrices
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