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Within the class of ARMAX models we consider the effects omitted variables have
on the dynamic shape and the exogeneity properties of economic relations. We
provide necessary and sufficient conditions for dynamic shape, Granger causation,
linear independence and structural invariance being preserved in the misspecified
equation. We show that, barring particular cases, the misspecified equation does
not preserve the properties of the “true” relation. In particular, the misspecified
equation has a complex dynamic shape even though the true relation is static. These
results apply to several misspecification problems, such as measurement errors, non-
linearity, aggregation over agents and over time. We argue that misspecification
must be regarded as a major source of dynamics for macroeconomic relations.

KEY WORDS: Stationary process, ARMAX model, Orthogonal projection, Dynamic
shape, Exogeneity.

INRODUCTION

The consequences of the omission of a relevant variable in static models are well
known. By contrast, little has been said on this subject within a dynamic frame-
work. The issue is extremely interesting, since, as shown in Section 3, a wide
class of misspecification problems can be thought of as omitted-variables prob-
lems. Examples are non-linearity, errors in variables, unobserved components,
signal extraction, aggregation over agents, temporal aggregation.

The questions we deal with in this paper are well described by means of the
following example. Assume that the variable Y; satisfies the static relation

Y: = aX; +cZ + B, (1)
where aX; +cZ is the best linear predictor of Y;, given X, Z; and all past values

of Y;, X, and Z,. Assume further that we omit the variable Z;, e.g. because data
are not available, and specify the relation as

The first question is: does equation (2) provide the best linear predictor of Y

given all the available information, i.e. X; and all of the past values of X, and
Y;? Put another way, is there any dynamic equation linking Y; and X; whose



prediction-error variance is less than the variance of R;? Consider, for instance,
an equation much more general than (2), i.e. the ARMAX

a(L)Y; = B(L)X: + (L)W, (3)

where (L), 8(L) and (L) are polynomials in the lag operator L and Y; — W,
is the best linear predictor of Y; given the available information. Is it generally
true that equation (3) reduces to the static form (2)? If the answer is negative,
what is the dynamic shape of the misspecified equation (3)? Can we state for
instance that in general a(L) = (L), so that the misspecified equation is a
rational distributed lag?

The problem can be generalized by allowing for a more general specification
of the “true” relation. Assume for instance that Y; follows the rational distributed
lag

a(L) c(L)
Y: =
b(L) d(L)
Can we state that the dynamic shape of the true relation is robust with respect
to misspecification, i.e. also equation (3) is a rational distributed lag?

The questions above are concerned with the dynamic shape of equation (3).
However, other important problems arise, concerning the exogeneity properties
and the forecast performance of the misspecified equation.

First, it is easily seen that equation (3) cannot perform better than equation
(1) in predicting Y;. Indeed, it can be shown that W, = A, + E;, where Ay is
orthogonal to Ey; that is, the prediction error of the misspecified equation de-
composes into two components: the prediction error of the true relation (1) and
an additional error arising from misspecification, which can be termed misspect-
fication error. The question is: under what conditions does this additional error
vanish, so that the misspecified equation retains all the information embedded
into Z;7

Second, suppose that in equation (1) E is orthogonal to all future values of
the processes X; and Z;, i.e. Y does not Granger cause either X; or Z;, given
the past of both the processes. Is there any feedback in relation (3)?

Third, assume that ¥; does not depend on X, (given Z,;), i.e. in equation
(1) a=0and E; is orthogonal to the future of X;. Under what conditions is Y;
independent of X, in the misspecified equation?

Last, suppose that the parameters of the true relation are invartent with
respect to some policy intervention, so that Lucas’ (1976) critique does not apply
to equation (1). Does the invariance property hold for the parameters of equation
(3)?

In this paper we provide necessary and sufficient conditions for the prop-
erties listed above to be robust with respect to misspecification. The central
result is a rather negative one. All of the dynamic properties of economic rela-
tions — i.e. prediction-error variance, dynamic shape, unidirectional causation,
linear independence, parameter invariance — are destroyed upon misspecifica-
tion, unless the joint covariance structure of the explanatory variables X; and Z;

X + Zy + E.
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satisfies restrictions which in most cases are unlikely to hold. The misspecified
equation has a complex ARMAX shape, even though the true relation is static.
The dependent variable Y; Granger causes X¢, even though it does not Granger
cause X, conditionally on Z;. The process X; enters the misspecified equation,
even though Y; is independent of X; in the true relation. Structural invariance
is lost when the relation is misspecified, so that policy analysis may be seriously
misleading, independently of Lucas’ rational expectations argument.

These results suggest two observations. First, we must be very careful in
specifying macroeconomic relations. In Section 3 we show that misspecification
problems arising from aggregation may be mitigated by including “distributive”
variables among the regressors. A similar point is made by Lau (1982), Jorgenson
et al. (1982) and Stoker (1984, 1986), within a static, non-linear set-up.

Second, we must be very careful in interpreting estimated macro relations.
Despite our conscientiousness, macroeconomic relations are likely to be affected
by many misspecification problems, particularly aggregation over agents and over
time, in addition to non-linearity and measurement errors. Therefore, the main
dynamic properties of these relations may well be due to misspecification.

The dynamic shape of macroeconomic relations is usually explained as re-
sulting from individual expectations, adjustment costs or agent’s inertia (see e.g.
Hendry et al. 1984, pp.1037-40). Equations with lagged dependent variables, for
instance, may arise from search costs, transaction costs and optimization costs,
or slow agents’ reactions due to habits and lags in perceiving changes. Moreover,
distributed lags may result from elimination of agents’ expectations. While not
denying the importance of these reasons, our results strongly suggest that lin-
earization and aggregation both over agents and over time are major sources of
the complex dynamic shape of macroeconomic relations.

Some results on the issues addressed here are already known, though they
have never been explored in a systematic way. In particular, there is a large
literature on Granger causation. Tiao and Wei (1976) show that unidirectional
causation is not robust with respect to temporal aggregation. The same con-
clusion holds for unobserved components models (see e.g. Nerlove et al. 1979,
pp.167-168; Sargent 1987, pp.346-348) and aggregation over agents (Lippi 1988a,
1988b). By contrast, little work has been done on the dynamic shape of misspeci-
fied equations. Weiss (1984) discusses the lag length of relations linking temporal
aggregates of time series. Lippi (1988a, 1988b) and Lippi and Forni (1990) show
that aggregation over agents completely modifies the dynamic shape of economic
relations.

The outline of the paper is as follows. Section 1 provides assumptions and
definitions. The main results are presented in Section 2. Section 3 collects ex-
amples and applications to measurement errors, non-linear models, aggregation
over agents, unobserved components and temporal aggregation. In this Section
it is shown that the main results stated in the previous literature can be easily
derived from the proposition proved in Section 2. In Section 4 some concluding
remarks are provided.



1. ASSUMPTIONS AND DEFINITIONS

1.1 The true relation

The time series Y;, X, and Z; are zero-mean, jointly covariance stationary, purely
non deterministic processes with non-singular, rational spectral-density matrix.
The process Y; follows the relation

_ a(L) e(L)
5(L) (L)

where the functions in the lag operator L are polynomials. Relation (4) is the
true relation. In equation (4) the roots of b(L) and d(L) are of modulus greater
than one, b(0) = d(0) = 1, a(L) and b(L) as well as c¢(L) and d(L) have no
common roots, E; is a white-noise disturbance orthogonal to Y;—, b > 0 and
X:—x, Ze—k, all k. These conditions ensure that [a(L)/b(L)]Xe + [e(L)/d(L)]Z; is
the best linear predictor of Y; within the Hilbert space spanned by the past of Y;
and the past, present and future of X; and Z;, while E; is the prediction error.

),t Zt + Et; (4)

X +

1.2 The explanatory variables

Since the vector process (Y; 2; X;) has arational spectral-density matrix (i.e.
possesses an ARMA representation), the vector process (Z; X:) has a rational
spectral-density matrix (Liitkepol 1984), and admits the representation:

e(L)Ze =f(L)Xe + 9(L)Uz: (5)
k(L)X: =h(L)Z; + 9(L)Uxt, (6)

where the polynomials in L satisfy the following conditions:
() g(L) has no factors common to all other polynomials;
(i) <(0) = k(0) = ¢(0) = 1, A(0) = O
(15¢) the roots of g(L) are of modulus greater or equal to one;
(iv) e(L)k(L) — f(L)h(L) vanishes only outside the closed unit circle, except for
zeroes of g(L). Moreover,
(v) Ugz: is orthogonal to X¢—k, Zt—h; k > 0, h > 0, while Ux; is orthogonal to
X¢—hy Zt—n, h > 0.1

The variables Z: and X have a rational joint Wold representation, i.e.

(x)=2 (i) «

where A(L) is a matrix of rational functions in L with no poles of modulus less or equal to
one, A(0) = I, det{A(L}] has no roots of modulus less than one and (Vze Vx:) is a vector
white noise orthogonal to Z¢—x, X¢—#, h > 0. Representation (5)-(6) is obtained from the Wold
representation by premultiplying both sides of (7) by

covgvf‘ ,V§‘ )
A‘(L) (1 T var(Vxe ) ,
0

1

where A*(L) is the adjoint of A(L), and by eliminating denominators and common factors.
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By construction, Uz: and Ux. are white noises orthogonal at all leads and
lags. Uj; is the residual of the orthogonal projection of Z; on the space spanned
by X: and the lagged variables Xi .k, Z¢—n, k > 0, h > 0, while Ux, is the
residual of the orthogonal projection of X; on the space spanned by X¢—n, Zt—n,
h > 0. Therefore, Z; — Uz, is the best linear predictor of Z; within the first space,
while X; — Uy is the best linear predictor of X, within the second one. We will
refer to equation (5) as the model of Z; conditional to X, or simply the relation
linking Z; and X,. Equation (6) is the marginal model of X;.

It will prove useful to define the set of admissible parameters of equations
(5) and (8). A particular set of values 7 for the parameters of equations (5) and
(6), i.e. e(L), f(L), g(L), k(L), h(L), var(Uz;) and var(Ux.), is admissible if it
satisfies the conditions (¢) through (iv) listed above along with var(Uz:) > 0 and
var(Ux:) > 0. The class of all admissible 7 is denoted by ®. It can be proved that,
since the spectral-density matrix of (Z; X ) is non-singular almost everywhere
on the interval [—x,x], i.e. neither Uz¢ nor Ux: are zero, representation (5)
is unique; that is, given the joint covariance structure of the processes Z; and
X, the parameters ¥ listed above are univocally determined by conditions (1)
through (v) (see Hannan 1970, chs. 2,3 or Rozanov 1967, chs. 1,2).

The conditions imposed on E; in equation (4) ensure that the residuals Uz,
and Ux: in equation (5) are orthogonal not only to the past of the processes
X, and Z, but also to the past of the process Y;. In fact, Ugz: and Ux, are
orthogonal to the whole process E;, while the lagged variables Y;_x, h > 0, are
linear combinations of the past of X;, Z and E,. Therefore Y; does not Granger
cause either X; or Z, given the past of both the processes.

1.3 The misspecified equation

The misspecified model is

a(L)Ye = B(L) X, +1(L)W: (8)
8(L)X: = 6(L)Y: + +(L)U:. (9)

The misspecified relation (8) is the model of Yy conditional to X;: the polynomials
in (8) and the process W, satisfy the restrictions imposed on the corresponding
polynomials and on the process Uz: in equation (5). Therefore, Y; — W; is the
best linear predictor of Y; given X, and all past values of X; and Y;. Equation
(9) is the corresponding marginal model; X; — Uy is the best linear predictor of
X, given all past values of X; and Y;.

A particular choice of the parameters in equations (8) and (9), ie. (L),
B(L), v(L), 8(L), 8(L), var(W) and var(U¢), is denoted by 0, while Q indicates
the set of all admissible O. The spectral-density matrix of the vector (Y; X )

is denoted by
S = (SYY Syx )
Sxy Sxx )’
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The assumptions in 1.1 ensure that S is a matrix of rational functions in e~**,
—x < A < 7. Moreover, S is non-singular almost everywhere. Therefore repre-

sentation (8)-(9) always exists and is unique.

1.4 The dynamic shape

We say that the misspecified equation (8) is
(a) rational distributed lag (RDL), if and only if a(L) = v(L) and the roots of
~(L) are of modulus greater than one;
(b) unrestricted ARMAX, if and only if it is not a rational distributed lag. More-
over, if the misspecified equation is RDL, it is
(a') finite distributed lag (FDL), if and only if v(L) = 1;
(a") static, if and only if it is FDL and A(L) = 8.
Similar definitions hold for equation (5). By definition, the true relation (4)
cannot take the shape (b).

1.5 Causation, independence and invariance

There is a one-way causation in the misspecified model, that is Y; does not
Granger cause Xy, if and only if 8(L) = O in equation (9), i.e. Uy is the residual
of the orthogonal projection of X; on its own past. There is a one-way causation
in model (5)-(6) if and only if A(L) = 0. There is always a one-way causation in
the true model, since by construction Y; does not Granger cause either X, or Z;
conditionally on both the processes.

Y, is independent of X, if, and only if, B(L) = O in equation (8) and Y; does
not Granger cause X; (i.e. Y; and X, are orthogonal at all leads and lags). Y; s
independent of X, conditionally on Z, if and only if a(L) = 0 in relation (4).

The misspecified relation (8) is invariant with respect to @ if and only if
the parameters of (8), i.e. a(L), B(L), 7(L) and var(W,), do not depend on the
parameters in ® — that is, they do not depend on the joint covariance structure
of Z; and X;. A similar definition holds for the true relation.

1.4 The misspecification error
Consider the projection of [¢(L)/d(L)]Z; on X, and the past values of X; and Y;.
Call this projection P; and the residual A¢. Then

_ (D)
~ (L)

}It Xt = })t + At + Et.
It turns out that A; + E; = W,, where W, is the residual of the misspecified
relation. In fact, both A; and E; are orthogonal to X; and the past values of X;
and Y;, while [a(L)/b(L))X¢ + P: belongs to the Hilbert space spanned by the
same variables. Moreover, E; is orthogonal to P; and Z;—k, k > 0; since A¢ =
(e(L)/d(L))2¢ — P:, Ey is orthogonal to A, so that var(W,) = var(A,) + var(E).
Hence, the prediction error W, decomposes into two orthogonal components,
E,, that is the prediction error of the true relation, and the additional error
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A¢. The variance of A; measures the information we lost when predicting Y;
using the misspecified relation instead of the true relation. The process A is
the misspecification error; i.e. the component of the prediction error arising from
misspecification.

2. RESULTS
2.1 Prediction

Proposition 1. The misspecification error A, is zero if and only if e(L) =0.
Proof. The sufficiency part is obvious. To prove necessity, assume W; = E;.

From (4) and (8) it is obtained

c(L)
d(L)

a(L)

a(L) h(D)

a(L)| Xe + V(L) — a(L)) B¢ (10)

Z = |B(L) -

The last term on the right-hand side belongs to the space spanned by E;_p,
h > 0. However, it belongs also to the space spanned by the present and past
of the processes Z and X;. Since the former space is orthogonal to the latter,
the last term of (10) is orthogonal to itself and therefore is zero. If e(L) # 0,
equation (10) implies that the processes Z; and X; span the same space and have
a singular spectral-density matrix, contrary to the assumptions in 1.1.

2.2 Invariance

Lemma 1. Define (V' the set of all parameter choices O of the misspecified

relation such that

Sxy S
var(E,) < Syy — —X—‘;,;J:—X‘ (11)

on the interval [—x,x). If ¢(L) # 0, whatever O in {' can be obtained for the
misspecified equation by a suitable choice of ¥ in ®, i.e. by a suitable choice of
the parameters of equations (5) and (6).

Proof. Take some O* in Q. This determines univocally § = S*. Define

. var(E;) O
R =S ( ( 0)

and



where z = e~**, —x < A < 7. Condition (11) along with ¢(z) # O ensure that
matrices R* and G* are well-defined rational spectral-density matrices. Therefore
there is always one (and only one) 7* in @ such that the spectral-density matrix
of (Z; X) is equal to G*. If we choice 7* for the parameters of equations (5)
and (6) we obtain S = S* by equation (12). This determines univocally 0 = 0*
for the parameters of the misspecified model.

Proposition 2. Assume that the true relation is invariant with respect to ®.
Then, the misspecified equation is invariant with respect to ® if and only if
c(L) =0.

Proof. If ¢(L) = 0 the misspecified equation and the true equation are the same. If
¢(L) # 0, take two choices O* and 0** in {1’ such that at least one of the equalities
o*(L) = o**(L), p*(L) = B**(L), v*(L) = v**(L), var(W,)* = var(W;)** does
not hold. By Lemma 1, both 0* and 0** can be obtained for the misspecified
equation by varying ¥ in ®.

2.3 Granger causation

Lemma 2. If ¢(L) does not vanish within the unit circle, the model of the
omitted term S, = [¢(L)/d(L)] 2, conditional on X, is

(L)d(L)S; = f(L)e(L) X + f(—i%’fl[c(owm], (13)

while the corresponding marginal model is

k(L)e(L) ., _ h(L)d(L) , , c(L)g(L)
0 Xe==5 Se+=20) 05 (14).

Proof. Equations (13) and (14) are obtained from equations (5) and (). Since
the variables S;_j, h > 0, belong to the space spanned by Z;_s, h > 0, it follows
that ¢(0)Ugz; is orthogonal to S¢—p, X¢—k, A > 0, k > 0, while Ux, is orthogonal
to S¢—n, Xe—n, h > 0. Moreover, ¢(L)g(L) does not vanish within the unit circle
because of the assumptions on ¢(L). The other conditions on the polynomials in
L are easily verified.

Proposition 3. Y; does not Granger cause X, if and only if the omitted term
S¢ = [¢(L)/d(L)} Z; does not Granger cause Xi.

Proof. Call Q, the orthogonal projection of Y; on the space Xx spanned by Xk,
all k, and H, the residual. Hence, S; = A¢ + K;, where Ay = Q¢ — [a(L)/b(L)] X:
and K, = H, — E;. Since both H; and E; are orthogonal to ¥x, K is orthogonal
to X¥x. On the other hand, A; belongs to ¥x; therefore, A; is the projection of
S, on Xx. It is clear from the definition of A, that A, belongs to the subspace
of ¥x spanned by the present and past of X if, and only if, Q; belongs to this
subspace.



Proposition 4. (a) If Z, does not Granger cause Xt, then Y; does not Granger
cause X;. (b) If ¢(L) does not vanish within the unit circle, Y; does not Granger
cause X; if and only if Z; does not Granger cause X;.

Proof. (a) The projection of S; on the whole process X; is A; = [e(L)/d(L)]T,
where II; is the projection of Z; on the same space. If Il belongs to the subspace
spanned by X;_x, k > 0, then also A, belongs to this subspace, so that S; does
not Granger cause X; and by Proposition 3 Y; does not Granger cause X;. (b)
It is clear from Lemma 2, equation (14), that if ¢(L) does not vanish within the
unit circle, then S; Granger causes X; if and only if Z, Granger causes X;. The
result follows from Proposition 3.

2.4 Independence

Proposition 5. IfY; is independent of X, conditionally on Z;, Y; is independent
of X, if and only if (i) ¢(L) = 0, or (it) Z, is independent of X,.

Proof. If a(L) = 0, then Syx = Szxc(z)/d(z), where z = e, —n <A<
The right-hand side vanishes if and only if either (#) or (¢7) hold.

2.5 Dynamic shape

Proposition 6. Ifc(L) # 0, an arbitrary dynamic shape can be obtained for the
misspecified equation and the marginal model (9) whatever the dynamic shape
of the true relation (4), by suitably setting ¥ and var(E).

Proof. Take some O* in (2 and set var(E;) such that (11) is satisfied. The result
follows from Lemma 1.

Remark. Assume that the true equation is static. If var(E;) = O then Q = €0/,
where (' is as in Lemma 1. By Proposition 6, the misspecified equation can take
whatever dynamic shape, depending on the parameters in (5) and (6). On the
contrary, if var( E;) > O there are some parameters 0 and some associated spectra
S which do not satisfy (11), i.e. 2’ C 1. The misspecified models characterized
by such parameters cannot be obtained from a static equation. The greater
var(E;), the smaller ' and the larger is the set of these models.

Proposition 7. The misspecified equation is a rational distributed lag if and
only if the model of the omitted term S; = [¢(L)/d(L)]Z; conditional on X, is a
rational distributed lag.

Proof. Assume that in the misspecified equation (L) = 7(L) and (L) vanishes
only outside the closed unit circle. Equation (4) implies

Se = [B(L)/A(L) - a(L)/b(L)] X¢ + (W: — Eq). (15)

W, belongs to the space spanned by E;, S; and X; &, k > 0, so that E;_; is
orthogonal to W, for h > 0. Since W; is orthogonal to Y¢_p, X¢—k, h > 0,k >0,
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it is also orthogonal to Si—p = Yi—n — [a(L)/b(L))| Xt—n — Et—n, h > 0. Hence
W, — E, is orthogonal to S;_p, X¢—k, £ >0, A > 0. The model of S; conditional
on X is then obtained by (15) eliminating denominators and common factors,
so that it is RDL. Conversely, let us assume that the model of S, conditional on
Xt iS

Se = [f'(L)/¢' (L) Xe + Use, (16)

Then
Y, = [a(L)/5(E) + £'(L)/9 (D) Xe + (Be + Ust): (17)

E, and Ug, are orthogonal at all leads and lags, since E; is orthogonal to the
processes S; and X;. Moreover, Ug; is orthogonal by definition to S, Xk, h >
0, k > 0. Therefore Ug, is orthogonal to Y;—» = [a(L)/b(L)} X¢-n + Se—n + Ee—n,
h > 0. Hence, E; + Us; is orthogonal to X:—, Yi_n, k> 0, h > 0. Thus,
the misspecified equation is obtained from (17) eliminating denominators and
common factors, so that it is RDL.

Proposition 8. If ¢(L) does not vanish within the unit circle, the misspecified
equation is a rational distributed lag if and only if2 e(L)d(L) = ¢(L)g(L)/c(0).
n this case, a(L) = (L) = b(L)a(L), B(L) = a(L)a(L) + c(0)f(L)b(L) and
Wt = C(O)UZt + Et.

Proof. By Lemma 2, if ¢{L) does not vanish within the unit circle, equation (13) is
the model of S; conditional on X,. This model is RDL if and only if e(L)d(L) =
¢(L)g(L)/¢(0), so that by Proposition 7 the last condition is equivalent to the
misspecified equation being RDL. The expressions for a(L), B(L), (L) and W,
follow from equations (13), (16) and (17).

Proposition 9. If the true relation is static and ¢(0) # O, the misspecified
equation is (i) RDL, (i) FDL, (iis) static, if and only if the relation linking Z;
and X, is respectively (i) RDL, (ii) FDL, (iis) static.

Proof. By Proposition 8, if ¢(L) = ¢(0) # 0, a(L) = a(0) and d(L) = b(L) =1,
the misspecified equation is RDL if and only if ¢(L) = g(L), i.e. the model of Z,
conditional on X, is RDL. Moreover, in this case (L) = 7(L) = e(L) = g(L) and
B(L) = a(0)e(L) + ¢(0)f(L). Therefore a(L) = v(L) =1, i.e. the misspecified
equation is FDL, if and only if e(L) = g(L) = 1, i.e. the model of Z conditional
on X, is FDL. In this case, 8(L) = a(0) — c(0) f(L). It follows that B(L) = B(0)
(the misspecified equation is static) if and only if f (L) = f(0) (the model of Z
conditional on X is static).

2 This condition implies that (a) if the true relation is static in Z¢, i.e. ¢(L) = ¢(0) and
d(L) = 1, the misspecified equation is RDL if and only if the model of Z; conditional on Xe
is RDL; (b) if ¢(L) = O and the model of Z conditional on X is RDL, then the misspecified
relation is RDL if and only if the true relation is static in Z,.
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Proposition 10. If Z, does not Granger cause X;, then in equations (8) and (9)

a(L) = b(L)d(L)e(L)
B(L) = a(L)d(L)e(L) + c(L)f(L)b(L) (18)
¥(L)/8(L) = k(L)/9(L)

and (L), var(W;) are such that
() Pvar(We) = b(2) 2 (Ie(2)g(2) Pvar(Uze) + |d(2)e(2) Pvar(Br)),  (19)

where z = e ™}, —x < A < m.

Proof. From equations (4), (5) and (6) we obtain

9(2)P?
Sxx lk( )|2var(U t)
9P a(z)  c2)f(2)
Srx =i (0% "(b(z) d(z)e(z))
@R |aG) @]
v =@ )5 T a@e(z)

Mz_)g(z_)lz_v” var
|[d(2)e(z) P (Uze) + var(Ee).

Imposing the equalities (18) and (19) the same spectra are obtained from (8) and
(9).
3. EXAMPLES AND APPLICATIONS

3.1 Errors in variables

Assume that the variables ¥; and Z; are linked by the relation

5 _ c(L)
where ¢(L) and d(L) do not vanish within the unit circle and R; is orthogonal
to Y,— ny Zi—x, h > 0, all k. Assume further tha.t Y, and Z, are subject to a
measurement error. The observed values are Y, = Y¢+Ot and X; = Z;+U;, where
the errors O, and U, are joint white noises with diagonal variance-covariance
matrix, orthogonal to f’t_k and Z;_j for all k. Hence

c(L)
Y: = @) ——7Z: + E, (20)
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where E, = O; + R;. It is easily verified that E; is orthogonal to Yien, Xi—k,
Zi—x, h > 0, all k, so that (20) has the same properties as equation (4).

Assume that the univariate Wold representation of Z; is Zy = [u(L)/v(L)|Vz: il
where (L) has no unit-modulus roots. It follows that

E)-CHB -

The joint Wold representation of Z; and X, is obtained from (21) by inserting

the factor
I= 1 O 1 0
“\-11 11

between the matrix and the vector on the right-hand side. Following the steps
indicated in Subsection 1.2, footnote 1, we get

(o ) @)= G) @

where p = var(Vz¢)/[var(Vz:) + var(Ut)], Uze = (1 — p)Vz¢ — pUs and Uxe =
U; + Vz¢. The first line of (22) is the model of Z; conditional on X,, while the
second line is the marginal model of X.

Consider now the misspecified model, that is the model of Y; conditional on
X, and the corresponding marginal model. By Propositions 1, the misspecifica-
tion error is zero if and only if ¢(L) = 0, i.e. Y; is a white-noise process orthogonal
to Z, at all leads and lags. This condition is also equivalent to the misspecified
relation being invariant with respect to the autocovariance structure of Z,. Since
¢(L) does not vanish within the unit circle, by Proposition 4 Y does not Granger
cause X; if and only if u(L) = v(L), i.e. Z, is white noise. Lastly, by Proposition
8 the misspecified relation is RDL if and only if

d(L)[(1 - p)v(L) + pu(L)] = e(L)p(L)/e(0)-

It follows that if the true relation is static, either »(L) = p(L), i.e. Z; is white
noise, so that the misspecified equation is static, or Z; is not white noise, in which
case the misspecified relation is an unrestricted ARMAX.

3.2 Non-linearity

In this Subsection we assume that Y; and X, are strictly stationary and are linked
by the static quadratic relation

Y: = aX, + ¢[X}? — var(X,)] + Ei,

where E, is independent of Y;_s, X¢—&, b > 0, all k. The problem is to find the
linear model of Y; and X.

12



To simplify matters, assume that the explanatory variable X; is AR(1), ie.
X, = ¢Xe—1 + U, where U; is independent of X¢—p, h > 0. It follows that
Zy = X2 — var(X;) satisfies
Zy=¢*Zi 1 + Ry,

where R, = U? — var(U;) + 2¢U; X;_1. It is easily seen that R, is a zero-mean
white noise independent of X;_; and Z;_j for h > 0. Therefore Z; and X; are
jointly covariance stationary and their Wold representation is

(szte) B (I/UBM) 1/(12¢L)> (5‘)

The model of Z; and X; is

1-¢°L —p(1-—¢L) Z\ _(U
(8 L) (R)- (%) =)
where p = E(U?)/E(U2) and Uz: = Ry — pUs.

Since Z, does not Granger cause X;, by Proposition 4 Y; does not Granger
cause X, and, by Proposition 10, the misspecified equation is

(1 - ¢?L)Y; = [a(1 — ¢*L) + cp(1 — ¢L)| X¢ + v(L)Wr, (24)

where var(W,) = cvar(R,) + var(E;). The polynomial (L) is identified by the
condition on the roots and by the equality

cvar(R,) + var(E)|1 — ¢*L|?
cvar(R;) + var(E) ’

Iv(2)* =

where z = e~*, —x < A < x. It is apparent from (24) that a change in the model
generating X, modifies the parameters of the misspecified relation. Moreover, if
X, is white noise, that is ¢ = 0, the misspecified equation is static; conversely, if
¢ # 0, the misspecified equation is a general ARMAX.

3.3 Aggregation over agents

In this Subsection we analyze a simplified version of Lippi’s (1989) aggregation
problem. There are two groups of consumers. Within the first group each con-
sumer follows the static behavioral rule y;; = a1%;: + €;¢, where y;; and z;¢ are
respectively consumption and income of agent ¢. Within the second group the
behavioural rule is y;: = azZj¢ + €;:. Summing over individuals we get, with an
obvious notation,

Yie = a1 X3¢ + Ey (25)

for the first group and
Y2: = a2 X2¢ + Ey (26)

13



for the second one. We assume that both Ey; and E3; are orthogonal to Yi(¢-»),
Ya(t—ny, Xi(t-x), Xo@-k), B > 0, all k. Our aim is to study the model of
the aggregate consumption Y; = Y3; + Y2, conditional on the aggregate income
Xt = Xlt -+ th.

Summing equations (25) and (26) it is obtained

Y: = 2: + E, (27)

where Z; = a3 X1t + a2 X2t and Ey = E1¢ + Eo:. It is easily verified that equation
(27) satisfies the properties of equation (4), so that in our terminology equation
(27) is the true relation. Aggregate consumption depends on the joint distribution
(among individuals) of income and propensity to consume. Indeed, the variable
Z, is the covariance of this distribution. If Z; is not observable, and we substitute
the aggregate income X, for Z;, the resulting equation is misspecified. As we will
see in the following Subsection, the misspecified aggregate relation is in general
an unrestricted ARMAX.

A similar problem arises if the parameters of the micro equations are all
equal, but the micro equations either are non-linear or include unobserved ex-
planatory variables. Consider for instance the micro equations y;; = aZ;¢ + c[x?t -
var(zit)] + €;¢. Summing over individuals yields

Y; = aX; +cZ; + By,

where Z, = > z2 — 3, var(z;;). Also in this case aggregate consumption does
not depend on aggregate income only, but on the variable Z;, which is the variance
of the distribution of income minus its mathematical expectation. Therefore Z
should be included among the explanatory variables in the aggregate relation.
However, if data on Z are not available, the best we can do is to specify a model
linking Y; and X;. As stated in Proposition 2, the properties of this model depend
on the joint covariogram of Z; and X;.

3.4 Unobserved components

In this Subsection we discuss the unobserved component model of Nerlove et
al. (1979, pp.167-68). Since this model is formally identical to the two-groups
aggregation model discussed above, the conclusions of this Subsection apply to
the aggregation problem as well.

Assume that there are two economic series, Y; and X;, each one having two
components, seasonal and non-seasonal:

Y: = YNt + Ysy; Xe = Xne + Xse.
The non-seasonal components are linked each other by the relation
Yyt = anXnt + En, (28)
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while the seasonal components follow the relation
Ys¢ = as Xst + Est. (29)

The residuals Ey¢ and Eg; are orthogonal to Yn(t-n), Ys(—n), XN(t—k)>
Xs(t-k), h > 0, all k. The extension to the case of (28) and (29) being RDL is

straightforward.
As usual, we are interested in the model of Y; conditional to X;. Summing

(28) and (29) gives
Yi = Z, + E,

where Z; = an: XNt + as¢eXse and Ey = Eny + Eg¢. Clearly, if ay = as = a,
then Z, = aX, and no misspecification problems arise. Conversely, if ay # ag
the spectral-density matrix of (Z; X.) is non-singular. Since ¢(L) = 1, by
Proposition 1 the misspecification error is non zero and by Proposition 2 the
model of Y; conditional to X, is not invariant with respect to the joint model
of Z, and X;. In order to obtain this model, we must explore the covariance
structure of the explanatory variables Xy; and Xg;.

To simplify calculations, we retain Nerlove’s assumption that Xy and Xs:
are orthogonal at all leads and lags. It should be noted, however, that this
restriction can be easily dropped in our framework, whereas it is essential in
Nerlove’s one. The joint Wold representation of Xy: and Xg; is therefore

(o) = ("PFD ium) )

It follows that
<Z¢>:<asl‘/l’ GN¢/¢) (VSt)
Xe n/v ¢/¢ Ve )

1 1 -an as ay
ag —ay \ -1 as 1 1

between the matrix and the vector on the right-hand side, we obtain the joint
Wold representation of Z; and X;, i.e.

()=t (ot mars csontals” wid) (Vee),

where Vz; = agVs: + an Ve and V¢ = Vsy + Vy. The model of Z; conditional
on X, and the corresponding marginal model are

Inserting the factor

as — aN as — aN
v —uy véag — pvay X
as — an as —anN

_ Uz

véd(as — p) + puv(p —ay) —vdan(as — p) — pas(p — ay) (Z¢ )

(30)

15



where p = cov(Vze, Vxt)/var(Vxe), Uze = Vae — pVxe and Ux¢ = Vxe.

It is easily seen from (30) that Y; does not Granger cause X, if and only
if v(L)#(L) = u(L)Y(L), i.e. the autocorrelation structures of the seasonal and
non-seasonal components are the same (Proposition 3). This is Nerlove’s result.
Moreover, by Proposition 9, the model of ¥; conditional on X, is static if and
only if

véay(as — p)/p+ nas(an —p)/p
= v¢(as — p) + py(an — p) = p(as — an)

From the first inequality we get v(L)¢(L) = p(L)¢(L); substituting into the
second yelds ¢(L) = ¢(L) and p(L) = v(L). Therefore the relation linking Y;
and X, is static if and only if the unobserved components X n¢ and Xg; are white
noises.

3.5 Temporal aggregation

Let us consider a two-period version of the temporal-aggregation model discussed
by Tiao and Wei (1976). Assume for simplicity that the true relation linking y;
and z; is the FDL

ye = p(L)z: + e, (31)

where e; is orthogonal to y—nr, Zt—k, b > 0, all k and p(L) = po + p1L +

++ + p2r) L. However, data are available only for Yr = y(2¢) + y(2¢-1) and

XT = z(2¢) T+ T(2t-1)- We are interested in the relation linking Y7 and Xr.
Summing y¢ and y;_; gives

Y, = p(L) X, + E, (32)
where V; = y¢ + y4—1, X¢ = 2¢ + 2¢—1 and Ey = € + €:—1. From (32) we get
Yr = a(B)XT + C(B)ZT + Er, (33)

where B = L2, a(B) = po + p2B + psB + +++ + p2, B, ¢(B) = p1 + psB +
-+ + p2r—1)B", Er = E(3) and Zg = Xr-1. Note that in equation (33) Er
is orthogonal to Yr_2n, Xr—2k, Z7—2k, h > 0, all k. Equation (33) transforms
our temporal aggregation problem into an omitted-variable problem. Indeed, the
misspecified relation is obtained from the true relation (33) by omitting Zr.

If p(L) = po, then ¢(L) = 0 and the aggregate equation is Y7 = poXr + Er.
Therefore, if the true relation is static the aggregate relation is static. Conversely,
if p(L) is not a constant and the odd coefficients of p(L) are not all zero, then
¢(B) # 0, so that by Proposition 1 a misspecification error arises and by Propo-
sition 2 the aggregate relation is not invariant with respect to the model of Z7
and Xr.

Let us assume that the Wold representation of z, is

z, = [1/b(L)]ve
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, where (L) =1+ b L +---+ 17(2,)132’.2 It follows that

b(L)Xt = + V-1

(3 o) (%)= (2 ) (7))

where u(B) = 1+ b2B + -+ + b29)B°, v(B) = by + b3B +--- + by,—1B* 71,
v = Y(ap), VT = Y(2¢-1)- Note that the residuals vy and Vr are orthogonal to
Xr_2 and Zr_qp for A > 0.

Representation (5)-(6) for Zr and Xr is

and

(2_qbll‘_1_bé+BV —l—b;+B}l+2—qbiBV)(ZT)
[1—(1—b1)B]V—b1[l [1—(1—b1)B][l—blBV Xr

:(1_3)(UZT>

Uxt )’

(34)

where ¢ = 1+ (1 — b;)? and Uz = —Vr/q - (1 - b1)vr/g.

As Tiao and Wei (1976) point out, the causation structure of model (31)
is destroyed upon temporal aggregation. From (34) and Proposition 4 it follows
that if ¢(L) does not vanish within the unit circle then Y7 does not Granger
cause Xr if and only if [1 — (1 — b1)BJv(B) = bipu(B). This condition imposes
restrictions devoid of economic meaning on the parameters by, ...,bz,. The only
interesting case is b, = 0 for h > 0, i.e. z; is white noise. In this case Y7 does
not Granger cause Xr.

The dynamic structure of equation (31) is completely modified. The ag-
gregate equation is not in general a FDL. Indeed, by Proposition 8 the relation
linking Y7 and X7 is an unrestricted ARMAX unless

2-b _1-b+B o (1-B)(B)
: Bl ———+ (B) = ———-

(35)

Note that a necessary condition for (35) is p(1) = v(1), i.e. 1+b2+---+b(2,) =
by + bs + -+ + b(2,-1). If 72 is white noise the latter condition is not satisfied.

2 The case of a general ARMA can be treated in a similar way.
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CONCLUDING REMARKS

When a relevant explanatory process is omitted, the resulting misspecified equa-
tion does not preserve in general the dynamic shape and the exogeneity properties
of the original relation. The parameters of the misspecified relation depend on
the parameters of the model linking the omitted variable Z; and the explanatory
variable X, so that the misspecified relation is not invariant with respect to policy
interventions affecting the latter model. Unidirectional causation is lost, unless
Z; does not Granger cause X;. If the dependent variable Y; does not depend on
X, in the “true” relation, it depends on X; in the misspecified relation, unless Z;
and X; are orthogonal at all leads and lags. Lags of the dependent variable occur
in general in the misspecified relation even though such lags do not occur in the
true relation. If the true relation is static, the misspecified equation is dynamic,
unless the model of Z; conditional on X; is static.

These results apply to misspecification arising from measurement errors, non-
linearities, unobserved components, aggregation over agents, systematic sampling
and temporal aggregation. Such kinds of misspecification destroy exogeneity and
produce relations with a complex dynamic shape. Since estimated macroeonomic
relations are likely to be affected by measurement errors, non-linearity, imperfect
aggregation over agents and temporal aggregation, their dynamic properties are
unlikely to reflect the underlying economic behaviour. Moreover, misspecification
must be regarded as a major source of dynamics for macroeconomic relations.
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