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1 Introduction

An exchange rate basket is a form of pegged exchange rate regime and it takes place
whenever the domestic currency can be expressed as a linear combination of foreign cur-
rencies.

Currency baskets are essentially adopted by developing and transition countries in order
to obtain a nominal anchor for monetary policy and to gain some adaptability with re-
spect to fluctuations among the exchange rates of the major international currencies.
Recent crises involving emerging market economies have led some scholars, e.g. Eichen-
green et al. (1999), to conclude that pegged exchange rate regimes are inherently crisis
prone. Others, e.g. Mussa et al. (2000), do not agree with this statement because these
regimes have been successfully implemented by many countries. Nevertheless they con-
firm that pegged exchange rates can become a great source of vulnerability.

In particular, modern capital mobility enables the investors to exploit the interest rate
differentials which may arise between the domestic and the foreign currencies. Fur-
thermore, if it is known that the monetary authorities are committed to sustaining the
exchange rate, such speculations seem virtually riskless and can threaten the stability of
the exchange rate regime.

The aim of this paper is to analyze short term portfolio investments in a capital market
where an exchange rates is defined as a currency basket. The results obtained are com-
pared with Christoffersen and Giorgianni (2000), to which our work is strictly related.
The present work is organized as follows.

In Section 2 we analyze an investment decision in the context of an exchange rate basket.
We consider a self financed investment and we develop a strategy which minimizes the
expected quadratic cost function. This approach is inspired by mean variance hedging
(Musiela and Rutkowski (1997) and Schil (1994)) and it provides a simple explicit solu-
tion for a problem of imperfect hedging. Along with the optimal hedging strategy we also
derive the expression of the expected profit and of the expected variance of the profit.
The estimate of the basket weights is required for the construction of the investment
strategy, while the expected variance of the profit is needed in order to make an assess-
ment about the riskiness of the investment. The problems related with the estimation
of these quantities are discussed in Section 3 where a brief review of the standard ap-
proaches is also provided.

From a statistical point of view, the currency basket regime can be represented by a
regression model with stochastics regressors and possibly time varying coefficients.

We propose an adaptive estimation algorithm which can cope with this question. The
procedure is based on a result by Lipster and Spokoiny (1999). A similar application to
the volatility of financial time series can also be found in Mercurio and Spokoiny (2000)
and in Hardle et al. (2000).

The adaptive estimator is based on the assumption that the coefficients can be well ap-
proximated by a constant over some interval. We call this feature local time homogeneity.
The estimation strategy consists in detecting this interval of time homogeneity and then
estimating the parameters over this interval with standard techniques, such as ordinary
least squares.

The adaptive estimator is a nonparametric technique because it does not require that the
underlying process belongs to any specific parametric family, such as autoregressive or
moving average processes. The only requirement is the local time homogeneity. This hy-
pothesis is fulfilled particularly well by jump processes, which are constant over a certain
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Table 1: Speculative strategy.

Time Actions

t borrow lend
i MiX, MoY,

t + h | pay back receive
Zf:l(l + 1) M Xjeen  (1+710)MoYyin

interval and make jumps up or down at random times. A simulation study illustrates
the performances of the new methodology for jump processes with jumps of different
magnitude.

,Finally, in Section 4 we apply the optimal investment strategy to the case of the Thai
Bath basket. The basket weights are computed with the adaptive estimator. Further-
more we also implement a recursive estimator, a rolling estimator and the Kalman filter
which serve as benchmark models. We calculate the expected and realized profits and
the value at risk and we compare the performances of the different estimators with profit
based criteria. The last section concludes.

2 Investing in an exchange rate basket

An exchange rate basket regime takes place whenever a currency Y; can be written as
a linear combination of K other currencies. Taking the currency 1 as numeraire, i.e.
X1, =1, one can express the value of the basket by the following equation:

K
Y= Xy, (1)
j=1

where X;; is the amount of currency 1 per unit of currency j, i.e. the cross currency
exchange rate.

We remark that for notational convenience we do not isolate the numeraire out of the
sum.

The above relationship usually holds only on the average, because the central bank
cannot control the exchange rate exactly. Moreover the weights «; may also change over
time because of the reaction of the monetary authorities to changes in macroeconomic
fundamentals, and/or speculative pressures.

The aim of this paper is to analyze the possible strategies of an investor who wants
to speculate on interest rate differentials which may arise among the countries whose
currencies are in the basket. Suppose for simplicity that the country with currency Y;
has the highest interest rates. Then the main idea consists of going long in currency Y;
and short in a portfolio of the other currencies X;;, for j = 1,... , K. This concept is
summarized by Table 1.

According to a definition of arbitrage which is standard in mathematical finance (see e.g.
Elliot and Kopp (1999) or Musiela and Rutkowski (1997)), we would have an arbitrage
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opportunity, i.e. a riskless profit, if we can find a portfolio such that the following
relationships hold:

K
0 = > M;X;— MY,
=1
K
0 < (I+ro)MoYyin— Z(l +75) M; X t4n
=1
K
0 < E[(14r0)MoYirn—Y (1+7))M;X;4n
=

Such a possibility is very unlikely to happen in practice and will not be investigated here.
Instead we want to consider an investment which leads to a positive profit on the average.
Therefore we face some intrinsic risk and we have to construct our investment strategy
in order to minimize it.

The mean-variance hedging approach may provide a solution. The mean-variance hedging
has been developed for the hedging of non-attainable contingent claims. Furthermore, it
can be used as a cheaper alternative to perfect hedging and super hedging and focuses
on the minimization of the tracking error at the terminal date (Musiela and Rutkowski
(1997) and Schal (1994)).

In our context, we construct an optimal portfolio made of short positions in the currencies
composing the basket: ) £;X jt+h- This portfolio can be regarded as a derivative which
has to be replicated in mean by one unit of currency Y;,p.

We say that the portfolio is optimal because it is constructed in such away that the
expected deviations between > E;X jt+h and Y are zero and the variance is minimized.

2.1 The time varying currency basket regime

We now consider a generalization of the exchange rate basket described by equation
(1). The basket weights are an expression of the monetary policy of the central bank
and therefore they are regularly updated in order to follow changes in macroeconomic
fundamentals, such as trade patterns, or because of speculative pressures.

In order to model the variability of the coefficients we define now the basket regime in
the following way:

K

Y= Z ;1 Xt + €t (2)
=1

A stationary error term ¢; with Ee; = 0, and Ee? = o2, is also added in order to underline

the fact that the monetary authorities cannot control the exchange rate exactly and they
let it fluctuate around a central parity.

In the remainder we assume that the random variables: Y;, X;;, o and &; have finite
second moments.

The agents only observe the exchange rates Y; and X;; and they know that the cen-
tral bank has committed itself to control the magnitude of the fluctuations of the home
currency around a basket of known foreign currencies, whereby the values of the basket
weights are not disclosed to the public. Therefore the information set F; of the agents
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only includes the values of the exchange rates Y,, X, for s <t and j =1,... ,K. For-
mally F; is the o-field generated by Y, X, for s <tand j =1,... , K.
Finally we assume that e;44, aj1p and X; ;. for j = 1,..., K are conditionally inde-

pendent given F;. No distributional assumption is required on the ¢; for the development
of the financial strategy, while for the sake of the estimation we assume normality.

We are considering a two stage model, where an investment decision is made at time ¢ and
the position is kept until time ¢ 4+ h. In the section devoted to the empirical analysis we
will consider holding periods 30 and 90 days, respectively. This represents a simplifica-
tion. Nevertheless, it is required because we estimate our model using inter-bank interest
rates. Therefore, our assets consist of bank deposits and cannot be traded until maturity.

2.2 Mean-variance hedging

The mean-variance hedging problem can be formulated as follows: we have to determine
at time ¢ a strategy ({1,... ,€k) such that the expected squared deviation of ) &; X ,1p
form one unit value of currency Y;, is minimized. We consider therefore the following
quadratic cost function:

2

K
E{ { Yien = D &Xjten ‘ft : (3)
j=1

and substituting (2) for Y;,, we get:

2

K K
E Z 0, t+h X jt+h — Z §i Xjt+h + €t ‘ft

j=1 j=1
2
K
=E | [ D (ElajusnlF) = €)X an+ Gan | |7 ]
7j=1
where:
K
Covn = Eorn + Y (@en — E(@0nl F) Xjpine

j=1

The cross term is still zero by the assumption of conditional independence and E((7, | F;)
does not depend on §; for j = 1,...,K. Differentiating with respect to &;, for j =

1,..., K, we obtain the following system of K first order conditions:
K
—E [ Xjaen | D _(E(ernlFe) =€) Xjeen | |Fe | =0, forj=1,... ,K;
i=1

whose solution provides the optimal strategy:

§ = E(ajqnlF) forj=1,... K.
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This optimal strategy implies that the expected value of revising the hedging portfolio is
Zero:

K
E(Yien— D & X 0| F | =0
i=1
and the expected quadratic costs are:
X 2
E\ (| Yern = D& Xjuen ‘ft
j=1
2
K
= E(GnlF) =0 +E | | D (jsrn — E(uenl F) Xjpan | |Fr]  (4)
j=1

We find out that (14 ry)~1Y; is the amount of money which is needed at time ¢ in order
to hedge the portfolio ) E(a;¢1n|Ft) X ++p in the mean-variance sense, where rq is the
interest rate paid on a h day deposit in currency Y;.

On the other hand, if we prefer avoiding any risk we can simply buy at time ¢ the dis-
counted value of the portfolio: > (1 + rj)_lE(aj,t+h|.7-"t) jt- Therefore, the implemen-
tation of the mean-variance hedging strategy may appear profitable only if the following
inequality holds:

K

(L470) 'Yy < D (14 75) ElajunlF) X ()
=1

which means that the initial cost required by the mean-variance hedging is smaller than
the one required by the perfect hedging.

2.3 The speculative strategy

If inequality (5) holds, then the speculative strategy can be implemented in the following
way:

e borrow the portfolio (1 + ;) " E(ajn]Ft) X1,
e lend (1+19)”'Y;,

e invest the difference Y (1+7;) " E(ejt+n|Ft) Xt — (1+70)"'Y; at the risk-free rate
T1.

The profit, its expected value and its variance are respectively the following:

K
O, = Yin— Z Eajt+n|Fo) Xjt4n
K
1+ 7'1 Z(l + Tj)_lE(aj,t+h|ft)Xj’t — (1 + To)_llft
J=1

K
EMA,IR) = (1+m) Zl-l'?”g (e rnlF)Xjr — (L4+10) 'Y | >0
Jj=1

Var(II 4| F) = E(CEnlF)
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This result is comparable with that obtained by Christoffersen and Giorgianni (2000).
In order to make the comparison clear, we recall the derivation of their strategy and we
show why we consider their result as an equivalent result .

They consider a long position in Y;,; and a short position in a portfolio of the currencies
which compose the basket: > m;X; 5. The expression for the profit is therefore:

K

K
B —
I, = Yoen — ) miXjeen = ) uinXieen + €oen — Y miXjuin
=1 =1 =1

and they impose the condition that the initial cash flow has to be zero:

Z 1+7'] X]t_( +r0)_11/t-

j=1
The investment strategy (mq,...,mg) is constructed in order to remove the currency
j = 2,...,K risk (on the average) and therefore it must satisfy the following linear

system of equations:
0 _— E _— E y -’ ] _— 2’ CELELINY )
(6)(],7: A “: t) (O‘J,H—hLj t) mj J K

K
0 = Z(l-l—’l"j)ilijJt (1+mry) 11/75.

j=1
The solution is:
m; = E(aj’t+h|ft), j = 2, e ,K
K
mi = (14r) | L+r0) Y= (147 'E(eyenlF)X
j=2

We say that our investment strategy, based on mean-variance hedging arguments, is
equivalent to the one of Christoffersen and Giorgianni (2000) because the profits are
equal:

HH—h - Ht+h

Recall that X;; = 1, than it is easy to see that:

) K 5 & X Y;
07, = Yien— Y & Xjun+ (L+71) Z(1+rj)_(1+?”o)
j=1 =
K K

£ X1 Y
= Yirn— ) &Xjun+ (1+7r1) a
+ ]2_2 544 gt+ ;(1+rj) (14 7o)

K
= Yin— Y miXjin
i=1

B
= I,
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Therefore we conclude that an investor is indifferent between the two strategies.
Nevertheless the derivation of the strategy by means of the mean-variance hedging ap-
proach has one main advantage: it highlights under which conditions speculation on the
interest rate differentials can be convenient (equation (5)).

Furthermore the mean variance approach also provides a simple mean of insuring a short
position in a portfolio of the hard currencies when the initial capital is lower than the
one required by perfect hedging.

3 The estimation problem

In this section we discuss the problems connected with the estimation of the basket
weights and the conditional variance of the profits. As for the former, we first illustrate
the techniques used so far and then, in Section 3.1, the approach proposed in this paper.
The issue of estimating the basket weights is central to this paper. To solve this problem
one has to take into account the following points:

e The estimates of the basket weights are needed in order to take an investment
decision at a certain time ¢. The outcome of this decision will be only known at a
certain future time ¢ + h. Therefore, only observations up to time ¢ can be used for
the estimation.

e If the investment decision is made independently at every stage: ¢, t+ 1, ..., then
we have to consider an “on-line” or “real-time” estimator which regularly updates
the value of the estimate as a new observation becomes available.

e It is important to take into account the possible randomness of the basket weights,
because the success of the investment strategy directly depends on the accuracy of
the estimation.

The most simple approach to the estimation of the basket weights is probably recursive
ordinary least squares (OLS). This algorithm suits the problem very well if the basket
weights are indeed constant . In this case (2) can be seen as a regression equation,
and one has only to perform an OLS estimation at each time ¢, with all the observations
available at that time. The regressors are exchange rates which, since Meese and Rogoff
(1983), have been usually modeled as random walks. The OLS estimator is therefore even
superconsistent, that is it converges at rate ¢ instead of v/%, because we are estimating a
cointegrated system (Hamilton, 1994).

On the other hand, if the basket weights are not constant, then recursive OLS pro-
duces in general very poor results. A pragmatic and popular way of taking into account
the variability of the coefficients consists in choosing a rolling estimator. A fixed window
of the data is defined and the estimation is performed. Once a new observation becomes
available, the last observation is dropped from the end window and the new one is added
at the beginning. Such an algorithm is very easy to implement. Nevertheless, it has
many potential drawbacks. It deletes automatically from the sample many observations
which could still fulfill the assumptions of parameter constancy, and it does not even
try to prevent the fact that a structural break may be present just in the middle of the
window which is currently used for the estimation.

Estimators which can cope with time varying parameters have also been proposed. Coo-
ley and Prescott (1973) have introduced in the econometric literature the Kalman filter
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for estimating stochastic regression coefficients. This technique has been suggested by
Granger (1986) for the context of time varying cointegration and has been applied by
Canarella et al. (1990) to test purchasing power parity and by Christoffersen and Gior-
gianni (2000) for the present problem. Other approaches for the estimation of time
varying parameter models can be found for example in Hamilton (1994) and in Elliot
et al. (1995).

We now briefly present the specification of the dynamics of the basket weights proposed
by Christoffersen and Giorgianni (2000).

They first define the K x 1 vector o := [a1¢...ak], and then propose the following
vector autoregressive process for q;:

ar =Ta;_ 1+ 14 vy ~ N(0,%), (6)

where T' and ¥ are K x K matrices. Together with equation (2), the above equation
constitutes a state space model, where (2) is called the measurement equation and (6) is
called the transition equation.

If the model is correctly specified and T', ¥ and o2 are known, then a; can be estimated
recursively with the Kalman filter, which has the property of being the best linear es-
timator. Furthermore, the Kalman filter recursions provide also an expression for the
conditional variance of the profit (4).

But the main drawback is that one neither knows I' and ¥, nor if the model is correctly
specified. For this reason one has to plug into the algorithm some “reasonable” values
which are believed to be close to I' and .

This problem is actually very similar to choosing the two smoothing parameters in the
nonparametric procedure, which we propose in Section 3.1.

Christoffersen and Giorgianni (2000) choose I' equal to the identity matrix, and they
estimate ¥ and o2 on-line: o2 is estimated from the residuals of recursive OLS and %
is estimated by taking the sample covariance matrix of the first differences of the past
basket weights estimated with recursive OLS.

In this study we want to consider another approach for the estimation of time varying
regression coefficients. The related statistical theory has been developed by Lipster and
Spokoiny (1999), and an application to the estimation of the volatility of financial time
series can be found in Mercurio and Spokoiny (2000) and in Hérdle et al. (2000). The
aim of the procedure is to improve the rolling estimator. The basic idea of the rolling
estimation is maintained, so that the estimation is performed only on a subset of the
complete sample. Nevertheless the length of this subset is not fixed but it is estimated
adaptively from the data. We try to keep as many observations as possible, if the coef-
ficient are constant, but at the same time we try to detect changes in the parameters as
quick as possible.

Another important issue is the estimation of the conditional variance. In fact, the
expected variance of the profit can be used for evaluating the riskiness of the investment.
The estimation and in particular the forecast of the variance are quite difficult tasks.
One of the reason is that the realizations of the variance are not observed, so that one
can hardly measure the goodness of the prediction. Furthermore in this case we have to
provide an h-step ahead forecast, where h = 30 and 90, which is a very long horizon.
The state space modeling of the basket weights proposed by Christoffersen and Gior-
gianni (2000) may provide a solution to this problem. Nevertheless the estimate of the
variance also depends on unknown quantities which have to be plugged into the estima-
tion algorithm. Furthermore, this approach does not offer a solution if one avoids to
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model explicitly the dynamics of the basket weights, for example using a rolling OLS.
We recall that the expected variance of the profit, which is also the expected quadratic
cost of hedging, is given by:

2 2

K K
E{ | Yirn =D & Xuan | |Fe| = E| | Yien— D E(urnlF) Xjurn | |Fi
=1 =1

Define now @;,yp; as an estimator of E(cj;q,|F:), and assume that the conditional
variance of the profit is constant for all . Then we can estimate it by averaging over the
past realizations of the square hedging costs.

2

=

t— K
9 1

Titht = 7, Yorn = D & sinjsXjs+n (7)
s=1 _]:1

The assumption that the conditional variance is constant may sound quite restrictive.
Nevertheless the above estimator should give good results even if the quadratic cost fol-
low some ergodic process, because in this case any 30 to 90 step ahead forecast is close
to the unconditional mean.

The above formulation of the estimator of the conditional variance has the advantage of
being model-free and it has the appealing interpretation of directly linking the risk of
choosing an estimator to its past performance.

3.1 Adaptive window estimation

In this subsection, we discuss an adaptive estimation procedure which can cope with
the problem of estimating on-line the regression coefficients of a system with stochastic
regressors. The regression coeflicients are not assumed to be constant, but local homoge-
neous, i.e. there exists some interval where they can be well approximated by a constant.
This approach suits very well the problem of estimating time varying exchange rate bas-
ket weights.

This algorithm is based on a result of Lipster and Spokoiny (1999). Previous applica-
tions to the estimation and forecasting of the volatility of financial time series are due to
Mercurio and Spokoiny (2000) and Hérdle et al. (2000).

Consider the regression equation:

Y; = Xz—at + &, with g, ~ N(0, 0?) V t, (8)

where X;, oy K-dimensional random vectors with finite second moments both indepen-
dent from each other and from ¢;.

We now describe a statistical approach based on the assumption of local time homogene-
ity of the unknown coefficients a;. The assumption of local time homogeneity means
that oy is nearly constant within an interval I = [ — m,7[. The main objective of the
procedure which we propose is to determine the largest of such intervals in a data driven
way. Over this interval I we estimate with OLS:

~1
ar = (Z XtXtT> ZXth- 9)

tel tel
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This estimator has the following useful properties. Due to our assumption of local ho-
mogeneity, the value of oy is close to a constant vector for each ¢ € I. This means that
the value

Ar = sup [[a; - a2
tel

is small. Define also the random matrices V; and W7 as:

Vi=o 2y XX, W=Vl
tel
Hereafter, the elements of the matrix W are denoted by w;jr, 4,5 =1,... , K.

In the case of a standard regression model with deterministic design, the estimate oy is
the least square estimate and W7 is its covariance matrix. In particular each diagonal

element wj; ; of this matrix is the variance of the estimated @;r, ¢ = 1,... ,K. In our
situation the design points are random. By analogy with the regression case, we call w;;
the conditional variance of @; 1, i=1,... ,K.

Since the matrix V7 is random, we introduce a random set where certain regularity
conditions are satisfied. In particular we want to ensure that V is not degenerated and
in the sequel we restrict our considerations to this set. For some positive constants
b>0,B>1,p<1,7>1,A>+2and fori=1...,K define the random set, where
the following conditions are fulfilled:

—1
b<w <bB
Air = Wi, r|[V]leo <7
lwjir/wjjrl <p Vi=1,...,K

where ||V7||oo denotes the sup-norm of the matrix V;:

WVillo = sup  [[Vipll2.
{WERK | |u|=1}

Theorem 1 Let (Y1, X1)...(Y:,X;) obey (8), then it holds for the estimate Qj:

P (1@i,r — air| > Air + A\/Wiir; Air)
< 4eIn(4B)(1 + 2py/7(K — )N K" Nexp(—2?/2), i=1,...,K.

The proof of this statement can be found in Hardle et al. (2000).

Given observations (Y7, X1),... ,(Y;, X;) following the locally time homogeneous model
(8), we aim at estimating the current value of the parameter «, using the estimate a;
with a properly selected time interval I of the form [7 — m, 7] in order to minimize the
corresponding estimation error. Below we discuss an approach which goes back to the
idea of pointwise adaptive estimation, see Lepski (1990), Lepski and Spokoiny (1997) and
Spokoiny (1998).

The idea of the method can be explained as follows. Suppose that I is an interval-
candidate, that is, we expect time-homogeneity in I and hence in every subinterval of 1.
This particularly implies that the value Ay is negligible and similarly for all Ay, J C I
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and that the mean values of the a; over I and over J nearly coincide. Our adaptive
procedure roughly corresponds to a family of tests to check whether @; does not differ
significantly from & ;. The latter is done on the basis of Theorem 1 which allows under
the assumption of homogeneity within I to bound each |&v; ;1 — @;,s| by p\/Wii 1 + A\ /Wi g
provided that 4 and A are sufficiently large. If there exists an interval J C I such that the
hypothesis @; 1 = @; s cannot be accepted then we reject the hypothesis of homogeneity
for the interval I. Finally, our adaptive estimator corresponds to the largest interval
I such that the hypothesis of homogeneity is not rejected for I itself and all smaller
intervals.

Now we present a formal description. Suppose that a family Z of interval candidates I
is fixed. Each of them is of the form I = [r — m,7[, m € N, so that the set Z is ordered
due to m. With every such interval we associate an estimate o ; of the parameter o ,
due to (9) and the corresponding conditional standard deviation ,/wj; 1.

Next, for every interval I from Z, we suppose to be given a set J(I) of testing subintervals
J. For every J € J(I), we construct the corresponding estimate &y from the observations
for t € J according to (8) and compute ,/w;;, -

Now, with two constants y and A, define the adaptive choice of the interval of homogeneity
by the following iterative procedure:

Initialization Select the smallest interval in 7

Iteration Select the next interval I in Z and calculate the corresponding estimate ; r
and the conditional standard deviation ,/w;; 1

Testing homogeneity Reject I, if there exists one J € J(I), and i = 1,... , K such
that

|Qi,r — Q7| > pa/Wii 1 + A/Wis 7 (10)

Loop If I is not rejected, then continue with the iteration step by choosing a larger
interval. Otherwise, set I = “the latest non rejected I”.

The adaptive estimator @, of «; is defined by applying this selected interval T:
ai,T:aﬁforiz 1,... ,K.

As for the variance estimation, note that the previously described procedure requires the
knowledge of the variance o2 of the errors ;. In practical applications, o? is typically
unknown and has to be estimated from the data. The regression representation (8) and
local time homogeneity suggests to apply a residual-based estimator. Given an interval
I = [t — m,7[, with m > K we construct the parameter estimate ay. Next the pseudo-
residuals &; are defined as &; = Y; — X,/ @r. Finally the variance estimator is defined by
averaging the pseudo-residuals squared:

1
~2 _ 22
o =1 E & -

tel

3.2 Monte Carlo simulations

In order to illustrate the practical implementation of the adaptive estimation procedure
we perform a small simulation study. Specifically, we will evaluate the performance of
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the proposed algorithm for the case of a change point model, i.e. a model where the
regressor coefficients are constant over some interval and then are subjected to a jump,
after which they return to being constant. For such a model the interval of time homo-
geneity coincides with the period where the regressor coefficients are constant and the
main issue is to detect the change point as quick as possible.

The estimation algorithm involves the choice of the sets Z and J(I) of the considered
intervals and two numerical parameters A and p. We now discuss how these parameters
can be selected and how they affect the properties of the adaptive estimation. We start
form the set of intervals Z and J(I).

3.2.1 Choice of the sets Z and J(I)

The simplest proposal is to use a regular grid G = {t;} with t; = mt, for some natural
number m and with 7 = 3« belonging to the grid. We next consider the intervals
Iy, = [tg, tg«[= [tg, 7] for all t; < tg« = 7. Every interval I} contains exactly k* — k smaller
intervals J' = [tg,tx+[. So that for every interval Iy = [t,tx<[ and &' : k < k' < k* we
define the set J(I;) of testing subintervals J' by taking all smaller intervals with right
end point tg«: J' = [tyr, x+[ and all smaller intervals with left end point tx:J" = [tk, ti[:

j(Ik) = {J = [tkl,tk*[ or J = [tk,tkl[: k< k, < k*}

The testing interval sets Z and J(I) are therefore identified by the parameter m: the
grid step. If m is small the grid is dense and the test of homogeneity is performed very
often. On one hand, this increases the sensitivity of the procedure to structural changes,
but on the other hand, it also increases the possibility of rejecting a large interval of time
homogeneity. As far as change point models are concerned, the value of m also implies
a minimal delay in the perception of a jump.

The estimation is performed both on simulated and real data with a grid step: m = 30.

3.2.2 The choice of A and u

The behavior of the procedure critically depends on the parameters A and y. The val-
ues of A and p influence the estimation procedure like the bandwidth in nonparametric
regression (Green and Silverman, 1994) or density estimation (Park and Marron, 1990).
They determine the smoothness of the estimate and the sensitivity of the adaptive esti-
mation procedure. This can be seen directly from equation (10).

Smaller values of A and p are likely to lead to a rejection of large intervals quite often,
so that the estimate tends to have a smaller bias, but a larger variance. The sensitivity
to structural changes of the coefficients is very high, but this may also lead to erroneous
rejections of a true interval of time homogeneity due to “normal” stochastic variation or
to the presence of outliers.

Larger values of A and p present the opposite problem. They imply a less frequent rejec-
tion of large intervals and they reduce the sensitivity of the procedure to change points.
The optimal choice of the values of A and x4 remains an open question. The theory only
requires A, y1 > v/2. For the simulated data, we have chosen A = 2 and p = 4, which yield
a very good performance for the change point model both for large and small jumps of
the regressor coefficients. On real data we select the parameters A and g by minimizing
the sum of the forecasting error.
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3.3 Simulation results

The performance of the adaptive estimator is evaluated with data from the following
process:

Yi=o14+ a0 Xoy + a3 X3+ &4

The length of the sample is 300. The regressors X and X3 are two independent random
walks. The regressor coefficients are constant in the first half of the sample, then they
make a jump after which they continue being constant until the end of the sample. We
simulate three models with jumps of different magnitude. The values of the simulated
models are presented in Table 2.

The error term ¢ is a Gaussian white noise, with zero mean and variance ¢ = 107%.

Table 2: Simulated models.

first half of the sample: 1 <t < 150

a1, = 1 2t = 0.006 a3t = 0.04

second half of the sample: 151 < t < 300

large jump model ar,: = 0.85 az;; = 0.001 asz; = 0.04
medium jump model «;,; =0.99 as;: = 0.004 as,: = 0.028

small jump model ai: =0.9995 a2+ =0.0055 a3, =0.0255

For each of the three models above 100 realizations of the white noise € are generated
and the adaptive estimation is performed. We recall the values of the grid step and of
the smoothing parameters: m = 30, A =2 and y = 4.

Figure 1 shows the true value of the coefficients (4 top plots, ag: medium plots, as:
bottom plots) along with the median, the maximum and the minimum of the estimates
of all realizations for each model at each time point.

The simulation results are very satisfactory. The change point is quickly detected, al-
most within the minimal delay of 30 periods for all three models, so that the adaptive
estimation procedure show a good performance even for the small jump model.

4 An application to the Thai Bath basket

In this section we apply the financial and statistical theory developed so far to the case
of the Thai Bath basket.

The purpose of this section is twofold: on one hand, we will investigate whether arbi-
trage profits were possible among the currencies composing the Thai Bath basket, on the
other we will evaluate how the results of the speculation are affected by the choice of the
estimator.

A similar analysis on the same data set has been performed by Christoffersen and Gior-
gianni (2000). As far as the comparison of the estimator is concerned, they argue that the
Kalman filter should be preferred to the recursive and rolling estimators. This conclusion
however is not supported by our results.
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LARGE JUMP ) ) ) ) MEDIUM JUMP ) ) ) ) SMALL JUMP

Figure 1: On-line estimates of the regression coefficients with jumps of different magnitude.
Median (thick dotted line), maximum and minimum (thin dotted line) among all estimates.

Our set contains the daily exchange rates of the Thai Bath, Japanese Yen and German
Mark against the US $ (Figure 2), together with the nominal interbank 1-and 3-months
interest rates on US $§, Mark, Yen and Bath deposits (Figure 3). The period under ob-
servation is January 2 1992 to February 12 1997. The source of the data is Bloomberg,
L.P. and they were kindly provided by Lorenzo Giorgianni from IMF.

From 1985 until its suspension on July 2, 1997 (following a speculative attack) the Bath
was pegged to a basket of currencies consisting of Thailand’s main trading partners. In
order to gain greater discretion in setting monetary policy, the Bank of Thailand neither
disclosed the currencies in the basket nor the weights.

Similarly to Christoffersen and Giorgianni (2000) we assume to know the currencies com-
posing the basket: US §, Japanese Yen and German Mark. Therefore we can express the
US §/Thai Bath exchange rate in the following way:

Y$/th,t = ag + ang$/gm,t + aij$/jp,t + &t

The above equation seems to be confirmed by the statistical evidence because the R?
with respect to the full sample estimation is around 0.8 and the estimated coefficients
with fully modified OLS are highly significant.

Unit root tests confirm the hypothesis of nonstationarity for the univariate exchange-
rate time series, while Mean-F and Sup-F tests (Hansen, 1992) reject the hypothesis of
a stable cointegration relationship among them.
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4.1 Practical implementation of the adaptive estimator

The adaptive estimation procedure requires to choice of three parameters: m, A and pu.
The value of m does not influence the results very much and it can be reasonably set to
30. This value represents the minimal amount of data which are used for the estimation,
and in the case of a structural break, the minimal delay before having the chance of
detecting the change point.

The selection of A and p is more critical. These two values determine the sensitivity
of the algorithm. Small values would imply a fast reaction to changes in the regressor
coefficients, but they would also lead to the selection of intervals of homogeneity which
are possibly too small. Large values would imply a slower reaction and consequently the
selection of intervals which can be too large.

To overcome this problem we suggest a procedure which is based on heuristic arguments.
It has nevertheless some appeal because it focuses on the minimization of the sum of
squared forecast errors.

The main idea is that small changes in the values of A and p should not affect the
estimation results. Therefore we restrict our attention on a set S of possible pairs (A, p).
In the present context we chose all the even number between 2 and 8:

S={(\ )| pe {246, 8}}

Then we compare the 16 pairs with the following criterion at each time %:

2
t—1

K

(A", p4*) = argmin Z Ys — Zdj,s|sth',5
(WHES s—t—200 j=1

Finally, we estimate the value of &, with the selected pair (A", u*).

The appeal of the above selection criterion consists in the fact that it leads to the choice

of the pair (A, ) which has provided the least quadratic hedging costs over the past

trading periods.

We remark that the problem of selecting free parameters is not specific to the adaptive

estimator. The Kalman filter proposed by Christoffersen and Giorgianni (2000) faces the

similar problem of choosing the matrices I', ¥ and o2.

4.2 Three benchmark models

In order to compare the performances of the adaptive estimator with standard approaches
we consider three benchmark models: recursive OLS, rolling OLS and the Kalman filter.
If the regressors are indeed constant then the recursive OLS estimator:

t -1 4
e~ (yxx ) yoxr
s=1 s=1

equals the Kalman filter of the noisily observed constant process o (Harvey, 1992), and
it has the property of being the minimum variance estimator.

The rolling OLS estimator on the other hand represents probably the most simple and
popular approach to the estimation of time varying parameters.

t -1y
arol = ( Z XSX;r) Z X,Y,.
s=t— s=t—

k k
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It consists in performing the estimation only over a window of the last k& observations.
In the empirical analysis we choose k = 250.

The equations of recursive and rolling OLS are very helpful for understanding the pos-
sible advantages which may arise from the implementation of the adaptive estimator.
The adaptive estimator is a rolling OLS estimator with a variable window, where the
dimension of the window is estimated form the data at each stage:

t by
~ad, T
agle = > X,X| y XY,
s=t—k s=t—Fk

Finally the Kalman filter estimate is obtained by the following recursion. Let I be
the identity matrix and set the unknown quantities of equation (6) according to the
suggestions of Christoffersen and Giorgianni (2000) reported in Section 3. We recall that
' =1, ¥ and o2 are estimated recursively from the data, while the starting value a0|0 is
estimated by OLS.

The Kalman filter recursions are (Chui and Chen, 1998):

( Pojo = COV(ao\o)
Py = Boap a1+ Yo?
) Gy = Pt|t—1Xt(XtTPt\t—1Xt +0%)7!
Py = (I-GX/])Py_y
Qpi—1 = Q131
[ Qyr = Qo1 + Gilye — X Qgea),

We remark that if the data generating process in equation (6) is well specified and the
parameters I', ¥ and o2 are known then the Kalman filter should provide the best per-
formance among all the four estimators. On the other hand, because the data generating
process is unknown, estimators which do not require its explicit specification, such as the
adaptive estimator or even the rolling estimator can be more robust than the Kalman
filter.

Note that for all the above estimators the forecasted value of &y, coincide with the
last estimate ;.

We remark furthermore that all the models above require pre-sample values in order to
be initialized. For this purpose we use the first 350 observations which are then discarded.

4.3 The results

The estimation results can be seen in Figure 4 and in Figure 5, which show the output
of the adaptive procedure calibrated for a 1-month and a 3-month forecast horizon re-
spectively, together with the recursive and rolling OLS estimates.

It is interesting to see that the adaptive estimate tends to coincide with the recursive
estimate during the first half of the sample, more or less, while during the second half of
the sample it tends to follow the rolling estimate. This may be seen as a hint of a change
point, possibly a large realignment of the basket weights. However, these results may be
also due to the large outlier which is visible in the middle of the Bath/$ exchange rate
sample (Figure 2).

The main criterion for evaluating the performance of the different estimation procedures
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is made by plugging the estimated values of the basket weights into the formula of the
optimal quadratic risk minimizing strategy developed in Section 2. There it was also
shown that this strategy is equivalent to the one proposed by Christoffersen and Gior-
gianni (2000). Indeed numerical differences are of the order: 10713,

The results are displayed in Table 3. We compute the average expected profits, the av-
erage expected standard deviations of the profit and the average realized profit.

We also compute the cumulative profits, i.e. the sum over all the realizations of the
profits. This quantity is quite interesting since it expresses how much one could have lost
or gained by preferring a specific estimator.

In order to evaluate the riskiness of the investment with respect to the different estima-
tors of the basket weights, we also compute the value at risk (VaR) at a level p = 0.05.
The VaR is a measure of risk which has become popular in recent years and it quantifies
the biggest loss that can be incurred with probability p, within a certain horizon h. For
example for a standard normal random variable Z it holds that VaR(p = 0.05, Z) = 1.65,
because P(Z < —1.65) = 0.05, while for a random variable X ~ N(u,0?) it holds that
VaR(p = 0.05, X) = 1.650 — p. As far as our investment is concerned, under the as-
sumption of normality, the VaR of II; is:

VaR(p = 0.05, I1;1p) = 1.65+/E((TLp, — E(TL40|F2))2|F) — E(TLpn|Fy).-

In Table 3 we report the average values of the VaR and in order to see how correct the
measurement of the risk is we compute the relative frequency with which the realizations
of the profit overshoot the value at risk:

#(IL 1, < —VaR(p = 0.05, I, p))
# (L yp)

If the modeling assumptions and the estimates are “good”, then the above quantity
should be close to 0.05.

It is interesting to compute the VaR because its value is directly linked to the amount of
capital reserves which are required by regulators (see European Commission (1999)) in
order to insure a risky portfolio, and therefore it express the cost of detaining a certain
position.

If the estimate of the VaR is too conservative, then the investor has to keep more reserves
than he would need. On the other hand underestimating the VaR, and consequently the
risk, is not only dangerous, but it can also become expensive, because if the performance
of the portfolio overshoots the VaR too often, then the regulators will impose higher
capital requirements.

We remark that the adaptive estimator sometimes produces negative values of the esti-
mated basket weights. This result is either the sign of a poor estimate and/or a hint for
a realignment or instability in the relationship between the exchange rates. Therefore we
decide not to invest if the estimated basket weights becomes negative.

The expected profits are on the average larger than the realized profits for all the estima-
tors, so that the expectations are in general upward biased. The largest bias is due by
far to the recursive estimator, while the Kalman filter shows the smallest one although
the adaptive and rolling methods are quite close.

The expected standard deviation is similar again across the Kalman filter, rolling and
adaptive estimator, while the recursive OLS shows larger results for both investment

VaR performance :=
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horizons. This hints at its poor forecasting performance which is probably due to the
randomness of the basket weights.

It must be noted that these last results are quite different from the one obtained by
Christoffersen and Giorgianni (2000), where the expected standard deviation estimated
under the state space modeling assumptions is much larger than the one for recursive and
rolling OLS. This may be due to the fact that their estimate of the expected standard
deviation strongly depends on the unknown values of T, ¥ and o2 of equation (6) which
have to be plugged into the estimation algorithm. On the other hand the estimator of
the expected standard deviation which we propose in Section 4 is model free.

Their conclusion, which cannot be accepted here, was that the rolling OLS causes an
underestimation of the standard deviation and therefore reduces the awareness of the
risk.

The Value at Risk results have to be interpreted with caution, in particular because they
rely on the assumption of normality which is hardly fulfilled. Nonetheless one can say
that the recursive OLS strongly underestimates the risk (this is a direct consequence of
the overestimation of the expected profits). The average values of the VaR are large and
negative for both investment horizons, and therefore losses appear to be almost impossi-
ble.

The other three estimators perform quite well. The adaptive estimator is the most con-
servative, while the other two slightly underestimate the risk.

The average realized profits are quite similar among all methods. They are positive and,
as far as the three month investment horizon is concerned, they are significantly larger
than zero.

This provides a clear evidence for the fact that arbitrage profits were possible with in the
framework of the Thai Bath basket for the period under study.

The adaptive estimator obtains the largest profits for both investment horizons.

Finally the importance of choosing a good statistical tool is confirmed by the cumulative
profits which show that even a small improvement in the average profit can be quite
rewarding eventually. The best performance is obtained by the adaptive estimator, while
the second best performance is obtained by the recursive and rolling OLS together for
the one month horizon and by the recursive OLS alone for the three month horizon.
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Figure 2: Exchange rate time series.
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Figure 3: Interest rates time series: German (thick dotted line), Japanese (thin dotted line),
American (thick straight line), Thai (thin straight line).
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Table 3: Summary statistics of the profits.

one month horizon

Recursive Rolling KF Adaptive

Average Expected Profits 0.772 0.565 0.505 0.553
Average Expected Std Deviation 0.542 0.356 0.338 0.390
Average VaR -0.200 -0.003 -0.023 0.169
VaR Performance (target: 0.05) 0.271 0.059 0.106 0.016
Average Realized Profit 0.403 0.401 0.389 0.420
(Standard errors) (0.305) (0.305)  (0.330) (0.333)
Cumulative Profit 344.1 344.6 331.6 360.8

three month horizon

Recursive Rolling KF Adaptive

Average Expected Profits 1.627 1.467 1.375 1.455
Average Expected Std. Deviation 0.633 0.549 0.479 0.455
Average VaR -0.928 -0.675 -0.663 -0.209
VaR Performance (target: 0.05) 0.271 0.115 0.091 0.004
Average Realized Profit 1.166 1.141 1.147 1.182
(Standard errors) (0.464) (0.513)  (0.475) (0.438)
Cumulative Profit 945.4 925.7 929.1 958.5

The investments are normalized such that at each trading day we take a short position
of 1008 in the optimal portfolio of the hard currencies. The result refers to the period
April 9 1993 to February 12 1997 for the one month horizon investment and June 7 1993
to February 12 1997 for the three month horizon investment.
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Figure 4: Estimated exchange rate basket weights: 1-month horizon adaptive (straight line),
recursive (thine dotted line), rolling (thick dotted line).
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Figure 5: Estimated exchange rate basket weights: 3-month horizon adaptive (straight line),
recursive (thine dotted line), rolling (thick dotted line).
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5 Conclusions

In this paper we have analyzed the problem of investing and making arbitrage profits
in a capital market where the currencies are linked to a basket and it proposes both
a theoretical and a practical solution. Furthermore, we have proposed a new adaptive
method for the on-line estimation of time varying coefficients for a regression model with
random design, which shows a good performance on simulated data and appears to be
highly competitive with standard methods on real data.

The main results of the paper are the following.

First, we have analyzed the issue of investing in an exchange rate basket regime and
focused on that form of imperfect hedging which is mean-variance hedging. We have
derived an expression for the optimal strategy, for the expected profits and for the con-
ditional variance, both for the case of constant and random basket weights.

Secondly, we have tackled the statistical problems connected with the implementation of
the arbitrage strategy and the numerical evaluation of the expected profits and condi-
tional variances. In particular, one has to provide an estimate of the basket weights. This
problem is statistically very interesting because it consists of a real time estimation of
the coefficients of a cointegrated system, which are possibly time varying. We have pro-
posed a new adaptive estimation strategy, which basically assumes that the coefficients
are at least almost constant over some unknown intervals. The procedure determines
this interval of time homogeneity, where the estimation can be carried out with ordinary
least square. A small simulation study shows that the adaptive estimator performs quite
well for change point models.

Finally, we have tested the above results in an empirical study of the Thai Bath ex-
change rate basket. Specifically, we have implemented the optimal investment strategy
and evaluated the profits and the VaR as a measure of risk. We have estimated the values
of the basket weights by means of the adaptive procedure. However, we also consider
three benchmark models: the recursive OLS, the rolling OLS and the Kalman filter. The
first one neglects the possible randomness of the parameters, the second one accounts
for the time variability of the basket weights because it performs the estimation only on
a moving window of the data of fixed length and the third assumes explicitly that the
parameters follow a random walk.

All the estimators provide positive arbitrage profits, however the results clearly show the
importance of taking care of the possible time variability of the parameters, in particular
for a correct evaluation of the risk. The performance of the adaptive method appears to
be the best one.

The work performed in this paper still leaves some open questions, which may deserve fur-
ther research. The choice of an imperfect hedging criterion contains some arbitrariness.
We have considered a quadratic cost function, because of its nice analytical properties.
The main drawback of this choice lies in the fact that the optimal strategy minimizes
the expected deviations from the profits both of positive and negative sign. The min-
imization of an asymmetric cost function such as E(max(Y;1p — D &Xj t4h,0)|F;) may
be theoretically more appropriate.

Furthermore, a profitable investment strategy can be carried out only as long as the
exchange rate basket regime is sustained by the Central Bank. The break of the Thai
Bath basket on July 2, 1997 and the Asian crisis show that this cannot happen indefi-
nitely. It is clear that an approach that is able to infer and predict about the stability
of the currency basket would be very useful, but only a larger model which includes also
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macroeconomic fundamentals or an explicit specification of the data generating process
of the basket weights could face these questions. These issues are left for future research.
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