
 1

Differential Evolution and Particle Swarm Optimization in

Partitional Clustering

THIEMO KRINK

EVALife group, Dept. of Computer Science, Univ. of Aarhus, Denmark, e-mail:

krink@daimi.au.dk

SANDRA PATERLINI

Dept. of Political Economics, Univ. of Modena and Reggio E., Italy, e-mail:

paterlini@unimo.it

Abstract: In recent years, many partitional clustering algorithms based on

genetic algorithms (GA) have been proposed to tackle the problem of finding the

optimal partition of a data set. Surprisingly, very few studies considered alternative

stochastic search heuristics other than GAs or simulated annealing. Two promising

algorithms for numerical optimization, which are hardly known outside the heuristic

search field, are particle swarm optimisation (PSO) and differential evolution (DE).

In this study, we compared the performance of GAs with PSO and DE for a medoid

evolution approach to clustering, which Paterlini and Minerva (2003) introduced in

a previous paper. Moreover, we compared these results with the nominal

classification, k-means and random search (RS) as a lower bound. Our results show

that DE is clearly and consistently superior compared to GAs and PSO for hard

clustering problems, both in respect to precision as well as robustness

(reproducibility) of the results. Only for simple data sets, the GA and PSO can

obtain the same quality of results in contrast to k-means and RS, and, as expected,

for trivial problems all algorithms can obtain comparable results. Apart from

superior performance, DE is very easy to implement and requires hardly any

parameter tuning compared to substantial tuning for GAs and PSOs. Our study

shows that DE rather than GAs should receive primary attention in

partitional cluster algorithms.

Key-words: Cluster analysis, partitional clustering, differential evolution,

particle swarm optimization, genetic algorithms.

 2

1 Introduction

In the last decades, cluster analysis has played a central role in a variety of fields.

Clustering is often used as a tool for preliminary and descriptive data analysis and

for unsupervised classification. Its main purpose is to identify homogeneous groups

by finding similarities between objects regarding their characterising attributes.

Moreover, cluster analysis can be used to summarize the shared characteristics of a

group of objects by calculation of their centroids or baricentres.

Partitional clustering algorithms determine a grouping solution by maximising

the similarities among objects within the same groups while minimising the

dissimilarities between different groups. Thus, the algorithmic task can be stated as

an optimization problem. Statistical criteria that consider the within and the between

variance scatter matrices can be used to quantify the goodness of the partitions and

to determine the optimal one. Ideally, a clustering algorithm should be simple,

efficient and capable of dealing with huge datasets. Moreover, it should be objective

and robust for equivalent samples and able to detect different cluster shapes.

Nowadays, the k-means algorithm is one of the most popular partitional

clustering algorithms, because it is easy to implement and very efficient, due to its

linear time complexity. However, its main drawbacks are that it converges to

arbitrary local optima and that it cannot deal well with non-spherical shaped

clusters.

Many partitional clustering algorithms that have been introduced in recent years,

are based on evolutionary algorithms, such as Genetic Algorithms (GA) (Holland

1975), which are stochastic search heuristics inspired by Darwinian evolution and

genetics. The key idea is to create a population of candidate solutions to an

optimization problem, which is iteratively refined by alteration and selection of

good solutions for the next iteration. Candidate solutions are selected according to a

so-called fitness function, which evaluates their quality in respect to the

optimization problem. In case of GAs, the alteration consists of mutation to

randomly explore solutions in the local neighbourhood of existing solutions and

crossover to recombine information between different candidate solutions.

An important advantage of these algorithms is their ability to cope with local

optima by maintaining, recombining and comparing several candidate solutions

simultaneously. In contrast, local search heuristics, such as the stochastic simulated

annealing algorithm, only refine a single candidate solution and are notoriously

weak in coping with local optima. Deterministic local search, which is used in the k-

means algorithm, always converges to the nearest local optimum from the starting

 3

position of the search. The only way to explore the search space better is to re-run

the algorithm while initialising the search from different starting points.

Therefore, GAs are obviously an interesting alternative to k-means and simulated

annealing in clustering. However, in the scientific community of heuristics, simple

textbook GAs are known to have inferior performance compared to advanced

versions and other modern optimization approaches and are rather used as a lower

bound for performance comparison. Two promising and recently introduced

approaches to numerical optimization, which are rather unknown outside the

heuristic methods field, are particle swarm optimisation (PSO) and differential

evolution (DE).

In this study, we compared the performance of GAs with PSO and DE as

heuristic search methods for the medoid evolution algorithm previously introduced

by Paterlini and Minerva (2003) regarding a set of artificial and real-world machine

learning data sets. Moreover, we compared these results with the nominal

classification, k-means and random search (RS) as a lower bound technique. To our

knowledge, there have been only a few recent and rather unknown studies on PSOs

(e.g. Xiao et al. 2003) and no known previous study on DE in clustering.

The remaining sections of the paper are organized as follows. Section 2 gives an

overview of the application of GAs to clustering problems. Section 3 describes the

medoid evolution approach and introduces the search heuristics. The following

section 4 describes the experimental set-up regarding the algorithmic parameters,

benchmark problems, and run schedule. Section 5 reports the main results, and

finally, section 6 comments on our results and concludes our study.

2 Scientific Background

Genetic algorithms have been applied to partitional clustering in many ways,

which can be grouped into three main categories: (i) direct encoding of the object-

cluster association, (ii) encoding of cluster separating boundaries, and (iii)

centroid/medoid and variation parameter encoding for each cluster.

To our knowledge, the first application of GAs to clustering was introduced by

Raghavan and Birchand (1979) and it belongs to the first approach of using a direct

encoding of the object-cluster association. The idea in this approach is to use a

genetic encoding that allocates directly n objects to g clusters, such that each

candidate solution consists of n genes with integer values in the interval [1, g]. For

 4

example, for n=4 and g=2 the encoding "2112" allocates the second and the third

object to cluster 1 and the first and fourth object to cluster 2 and therefore the

following clusters ({ 14} , {23}) are identified. Based on this problem representation,

the GA tries to find the optimal partition according to a fitness function which

measures the partition goodness. Since 1979, many authors have used this approach.

It has been shown that such an algorithm outperforms k-means in the analysis of

simulated and real datasets (e.g. Murthy and Chowdury 1996). However, the

representation scheme has a major drawback because of its redundancy, for

instance, "2112" and "1221" represent the same grouping solution ({ 14} , { 23})).

Falkenauer (1998) tackled this problem in an elegant way. In addition to the

mentioned encoding of n genes representing each object-cluster association, they

represent the group labels as additional genes in the encoding and apply ad hoc

evolutionary operators on them.

The second kind of GA approach to partitional clustering is to encode cluster

separating boundaries. Bandyopadhyay et al. (1995, 1998, 1999) used GAs to

determine hyperplanes as decision boundaries, which divide the attribute feature

space to separate the clusters. For this they encode the location and orientation of a

set of hyperplanes with a gene representation of flexible length. Apart from

minimizing the number of misclassified objects, their approach tries to minimize the

number of hyperplanes required. Another interesting and more flexible approach by

Bandyopadhyay and Maulik (2002b) is to determine the boundaries between

clusters by connected linear segments instead of rigid planes. Sarafis et al (2002)

introduced an approach that identifies clusters by evolving a representation of linear

boundaries around clusters in the object attribute space, which they call rule-based

data clustering.

The third way to use GAs in partitional clustering is to encode a representative

variable (typically a centroid or medoid) and optionally a set of parameters to

describe the extend and shape of the variance for each cluster. Srikanth et al. (1995)

proposed an approach, which encodes the centre, extend, and orientation of an

ellipsoid for each cluster. Moreover, many authors proposed cluster centroids,

baricentres, or medoids as representation points to allocate each object to a specific

cluster (e.g. Maulik and Bandyopadhyay 2000, Chiou and Lan, 2001,

Bandyopadhyay and Maulik 2002a, Paterlini and Minerva 2003). The idea is to

determine a representation point for each cluster and to allocate each object to the

cluster with the nearest representation point, where 'nearest' refers to a distance

 5

measure, such as Euclidean distance. The fitness of a candidate solution is then

computed as the adequacy of the identified partition according to a statistical

criterion, such as the Marriott or variance ratio criterion (see section 3.2). Many

studies have shown that this approach is more robust in converging towards the

optimal partition than classic partitional algorithms (e.g. Maulik and

Bandyopadhyay 2000, Chiou and Lan, 2001, Bandyopadhyay and Maulik 2002a,

Paterlini and Minerva 2003).

Finally, some authors introduced hybrid clustering algorithms, which combine

classic clustering techniques with GAs. For example, Krishna and Murthy (1999)

introduced a GA with the direct encoding of object-cluster associations by

Raghavan and Birchand (1979), but applied k-means to determine the quality of the

GA candidate solutions. For this, each GA candidate solution is used as a starting

point for a k-means run. The quality of the solution found by the k-means run is then

used as the fitness of the GA candidate solution.

Compared to the great number of studies on partitional clustering with GAs, only

a couple of applications using PSO (e.g.: Xiao et al. 2003) and no application using

DE (to our knowledge) can be found in literature. Moreover, there have been

substantial research efforts on GAs in hierarchical clustering (e.g. Kuncheva 1995,

Tseng and Yang 2001) as well as applications of simulated annealing and other

local search methods to clustering that are beyond the scope of this paper.

3 The Medoid Evolution Algorithm

3.1 The Clustering Problem

Let O={o1,o2, …, on} be a set of n objects and let Xnxp be the profile data matrix,

with n rows and p columns. Each i-th object is characterised by a real-value p-

dimensional profile vector xi (i=1,..,n), where each element xi j in xi corresponds to

the j-th real value feature (j=1,…,p) of the i-th object (i=1,…,n).

 Given Xnxp, the goal of a non-hierarchical clustering algorithm is to determine a

partition G={C1,C2,,…,Cg} 1
(. . : , ; , ;)

g

k k h kk
i e C k C C k h C

=
≠ ∅ ∀ ∩ = ∅ ∀ ≠ =U O

such that objects which belong to the same cluster are as similar to each other as

possible, while objects which belong to different clusters are as dissimilar as

possible. For this, a measure of adequacy of the partition must be defined. The

clustering problem is to find the partition G* that has optimal adequacy with respect

 6

to all other feasible solutions G={G1, G2, …, GN(n,g)} (i.e.: Gi
�

 Gj ,i
�

 j) where

()
0

1
(,) (1) ()

!

g
k g n

k
k

N n g g k
g =

= − −∑ is the number of all feasible partitions. This is

equivalent to

 (,)nxpoptimise f X G
G

where G corresponds to a single partition in G and f(*) is a statistical-

mathematical function that quantifies the goodness of the partition (see next section

3.2).

It has been shown that the clustering problem is NP-hard when the number of

clusters exceeds three (Brucker 1978).

3.2 Statistical Clustering Criteria

Different statistical criteria have been proposed to measure the degree of

adequacy of a partition and to allow comparison across different partitions (Marriott

1982). These criteria usually involve transformations, such as the trace or

determinant, of the pooled-within groups scatter matrix (W) and of the between

groups scatter matrix (B).

The pooled-within scatter matrix, W, is defined as:

1

g

k
k

W
=

=∑W where Wk is the variance matrix of the objects’ features allocated

to cluster Ck (k=1,…, g). Thus, if xl
(k) indicates the l-th object in cluster Ck and nk the

number of objects in cluster Ck.

() () () ()

1

() ()

1

()() ',

where () / is the vector of the centroids for cluster

k

k

n
k k k k

k l l
l

n
k k

l k k
l

W

n C

=

=

= − −

=

∑
∑

x x x x

x x

The between scatter matrix, B , is defined as

∑∑
==

=−−=
n

1i

xxxxxxB nn i
k

g

k

k
k /)(where)')(()(

1

)(.

Then, the total scatter matrix T, of the n observations can be decomposed as

T=B+W.

In our study, we consider three statistical criteria to measure the adequacy of the

partition and define the optimisation problem (,)nxpoptimise f X G
G

respectively as:

1) ()minimise trace
G

W

 7

TRW – Trace Within Criterion (Friedman and Rubin 1967).

 This criterion assumes implicitly a low correlation among measurements, gives

equal importance to the variance within the groups, tends to create spherical clusters

and allows orthogonal transformations of the data. It can be shown that minimizing

trace(W) is equivalent to minimizing the sum of eigenvalues of W.

2)
trace()/(g -1)

maximise
trace()/(n- g)G

B
W

 VRC - Variance Ratio Criterion (Calinski and Harabasz 1974).

 (n-g) are the degrees of freedom of the within scatter matrix and (g-1) are the

degrees of freedom of the between scatter matrix. As for the Trace Within

Criterion, the Variance Ratio Criterion assumes implicitly a low correlation among

measurements, gives equal importance to the variance within the groups, tends to

create spherical clusters and allows orthogonal transformations of the data.

Moreover, in many cases, it can be used to identify the optimal number of groups by

comparison of maximization results for different values of g. However, for some

data sets, this method fails if the results increase monotically with larger values of g.

3) 2 det()
minimise g

det()G

W
T

 MC - Marriott’s criterion (Marriott 1971 and 1982)

 The Marriott criterion addresses the correlation between variables, detects

elliptical clusters with axes that are not parallel to the coordinates, and allows linear

(not singular) transformations of the data. It can be shown that minimizing det(W) is

equivalent to minimizing the product of the eigenvalues of W. Marriott’s criterion is

commonly used to search for clusters characterized by such a strong internal

correlation that one or more eigenvalues are equal to zero.

For further details about these and related criteria the reader is referred to Everitt

(1993). Note that each cluster set kC of G must at least contains one object, i.e.,

≠kC ∅, which is not guaranteed by the encoding of the medoid evolution

algorithm as we will explain in the following section.

3.3 Fitness Evaluation and Search Space

Central to population-based heuristics, such as GAs, is the concept of a

 8

population of individuals, where each individual consists of an encoding of a

candidate solution called chromosome (also: genes, genotype, or genome) and a

fitness that indicates its quality. In our study, we used floating point arrays to

encode representation points, hereafter called medoids, to be used in allocating

objects to different clusters and therefore in determining a partition. Hence, if Xnxp is

the profile matrix and g the number of clusters {C1,C2,,…,Cg } of the set of n objects

O={o1,o2, …, on}, each chromosome in the population consists of p x g cells mkj

(k=1,…,g, j=1,…,p). Each group of p cells, that corresponds to the vector mk,

identifies the k-th medoid coordinates in the Rp space of the measurements. The g

groups of p cells that constitute the vector m represent the g medoids of the clusters.

Figure 1 shows an example for a problem with 3 clusters and 4 features.

m11 m12 m13 m14 m21 m22 m23 m24 m31 m32 m33 m34

m1

medoid coordinates of cluster 1
m2

medoid coordinates of cluster 2
m3

medoid coordinates of cluster 3

Figure 1. Example of a cluster problem encoding with 3 clusters and 4 features.

In principle, any point in Rp could be considered as a possible choice for a

medoid. However, it makes sense to restrict the search space to roughly the size of

the profile matrix domain [xmin, xmax], which is more likely to contain good medoids.

In our study, we decided to define the medoid domain to be 40% larger than the

profile matrix domain, i.e., [xmin-0.2| xmax - xmin |, xmax + 0.2| xmax - xmin|].

It is then necessary to define a mapping between the medoid search space and the

clustering search space G={G1, G2, …, GN(n,g)}. The mapping that we used is inspired

by Forgy’s approach of clustering (Forgy 1965). A partition H is determined by

allocating each object to the nearest medoid, where 'nearest' refers to a distance

metric, which is the Euclidean distance in our study. The adequacy of a feasible

partition H is then evaluated by using one of the three statistical criteria (TRW, MC,

VRC) described in section 3.2. Otherwise, if H is infeasible (. .:)ki e C = ∅ , we

penalize the candidate solution with a fitness worse than the worst fitness of a

feasible solution. More formally the fitness function is defined as:

{ }
{ }

1 2 (,)

1 2 (,)

(,) if , ,...,
(,)

 if , ,...,

N n g
nxp

nxp N n g

f H H G G G
F

K H G G G

�
⊂ = �

= �
⊄ =

��
X G

X m
G

 9

where m is the vector of the medoids of a candidate solution, f(.) is one of the

statistical criteria TRW, VRC or MC and K is 108 if f(.) corresponds to TRW or MC

and to -108 if f(.) corresponds to VRC respectively.

Note that there is no one-to-one correspondence between the search space and

the space of feasible partitions: different medoid vectors can identify the same

partition H. Moreover infeasible solutions might occur (e.g.: objects are allocated to

less than k clusters).

3.4 Search Heuristics

3.4.1 The Genetic Algorithm (GA)

A GA is an evolutionary algorithm inspired by Darwinian evolution and

genetics. Evolutionary algorithms have been originally introduced by Fogel et al.

(1966) as evolutionary programming and Rechenberg (1973) and Schwefel (1975)

as evolution strategies although the idea to use evolution as an inspiration for

optimization dates back to the 1940s (for a complete overview see Fogel 1998).

Later, John Holland (1975) introduced the term genetic algorithm (GA). The main

algorithmic innovation in GAs is the introduction of a recombination operator called

crossover that allows to recombine solutions of candidate solutions inspired by

genetic reproduction. In our GA implementation (see table 1a), first a population of

individuals containing the candidate solutions (encoded in floating point numbers) is

created and the fitness of each individual is evaluated by the fitness function. The

chromosomes of the start-up population are initialized with randomly chosen object

feature vectors from the dataset.

void genetic_algorithm()
{
 initialize();
 evaluate();
 determineAndProtectElite();
 for (int i=0; i<numIterations; i++) {
 selectNewPopulation();
 apply_crossover();
 apply_mutation();
 evaluate();
 determineAndProtectElite();
 }
}

 Table 1a: Pseudo-code of the genetic algorithm (GA).

After initialization, the population is iteratively refined by selection of

individuals for the next iteration, application of mutation and crossover operators,

 10

and re-evaluation of the new population according to the fitness function. For

selection we use tournament selection of size 2, i.e., for each individual j we choose

another individual k randomly from the population, compare the fitnesses, and

substitute j by k in the new population if k's fitness is better. Further, we use elitism

with an elite size of 10, i.e., the 10 best individuals of the population in each

generation are left unchanged by mutation and crossover. For this, we rank the

individuals according to their fitness at the end of the evaluation phase. As the

mutation operator, we use Gaussian mutation, such that

)()1,0(min,max, iiii xxNjj −⋅⋅+= σ ,

where ij is the i-th gene of individual j, N is the Gaussian normal distribution,

and σ the variance parameter of the mutation operator. The crossover operator in

our algorithm is arithmetic crossover with

iiiii bwawc ⋅−+⋅=)1(

where c is the offspring genome of the parent genomes a and b, iw a random

weight of the interval [0, 1] and i = 1,..., n, with pgn ⋅= (number of genes). The

application of the crossover operator to a genome j means that j becomes parent a,

parent b is chosen randomly from the population and the offspring c substitutes j.

Both operators are applied to each individual in the population, which is not in the

elite, with a probability pm for mutation and pc for crossover respectively. The

algorithm terminates after a fixed number of iterations. The optimization result is

the candidate solution and the fitness of the best individual in the last generation.

3.4.2 Particle Swarm Optimization (PSO)

Particle Swarm Optimization, which was introduced by Kennedy and Eberhard

(1995) is inspired by the swarming behaviour of animals and human social

behaviour. A particle swarm is a population of particles, where each particle is a

moving object that 'flies' through the search space and is attracted to previously

visited locations with high fitness. In contrast to the individuals in evolutionary

computation, particles neither reproduce nor get replaced by other particles.

Each particle consists of a position vector x� , which represents the candidate

solution to the optimization problem, the fitness of solution x� , a velocity vector v�

and a memory vector p
�

 of the best candidate solution encountered by the particle

with its recorded fitness.

The position of a particle is updated by

(1) () (1)x t x t v t+ ← + +
� � �

 11

and its velocity according to

1 2(1) (() (()) (()))gv t wv t p x t p x tχ ϕ ϕ+ ← + − + −
� � � � � �

,

where 1ϕ , 2ϕ are uniform distributed random numbers within [minϕ , maxϕ]

(typically minϕ = 0.0 and maxϕ = 2.0) that determine the weight between the

attraction to position p
�

, which is the best position found by the particle so far and

gp
�

 the overall best position found by all particles. A more general version of PSO

considers gp
�

 as the best position found in a certain neighbourhood of the particle,

which does not generally contribute to performance improvements. Note that 1ϕ

and 2ϕ are newly generated for each component of the velocity vector. Moreover,

the so-called inertia weight w controls how much the particles tend to follow their

current direction compared to the memorized positions p
�

 and gp
�

. Finally, the so-

called constriction factor χ can be used to manipulate the overall velocity of the

swarm. In our preliminary parameter tuning experiments we focused on the control

of the inertia weight, which was decisive for the performance of the PSO. Moreover,

the speed of the particles is limited by a maximum velocity maxv
�

, which is typically

half of the domain size for each parameter in vector x
�

.

The algorithm works as outlined in the pseudo-code of table 1b.

void particle_swarm_optimization()
{
 initialize();
 evaluate();
 updateParticleMemories();
 for (int i=0; i<numIterations; i++) {
 updateVelocities();
 updatePositions();
 evaluate();
 updateParticleMemories();
 }
}

 Table 1b: Pseudo-code of the particle swarm optimization (PSO) algorithm.

The initialization of the algorithm corresponds to the description for the GA

above, but additionally requires the initialization of the speed vectors, which are

uniformly distributed random numbers in the interval [0, maxv
�

]. After initialization,

the memory of each particle is updated and the speed and position update rules are

applied. If the speed exceeds maxv
�

it is truncated to this value. Moreover, if a new

 12

position vector is outside the domain, it is moved back into the search space by

adding the negative distance with which it exceeds the search space to the position

vector. This process is applied to all particles and repeated for a fixed number of

iterations. The optimization result is the best recorded candidate solution (gp
�

 in the

last iteration) and fitness at the end of the run.

3.4.3 Differential Evolution (DE)

Differential evolution (Storn and Price 1995) is a rather unknown approach to

numerical optimization, which is very simple to implement, requires little or no

parameter tuning, and is known for remarkable performance. After generating and

evaluating an initial population, as described for the GA above, the solutions are

refined as follows (see table 1c): For each individual genome j, choose three other

individuals k, l, and m randomly from the population (with j≠k≠l≠m), calculate the

difference of the chromosomes in k and l, scale it by multiplication with a parameter

f and create an offspring by adding the result to the chromosome of m. The only

additional twist in this process is that not the entire chromosome of the offspring is

created in this way, but that genes are partly inherited from individual j, such that

�� � <−⋅+
=

 otherwise .

)1,0(if)..(.
.

i

ciii
i genej

pUgenelgenekfgenem
geneo

The proportion is determined by the so-called crossover probability cp (an ill-

conceived term), which determines how many genes of the difference vector on

average are copied to the offspring. More precisely, the operator iteratively copies

consecutive genes (from a random starting point on and continuing with the first

gene after the last gene has past) of the difference vector to the offspring until

cpU ≥)1,0(. If the offspring o is better than j then j is substituted by o .

void differential_evolution()
{
 initialize();
 evaluate();
 for (int i=0; i<numIterations; i++) {
 createDifferenceOffspringsAndReplaceParentsIfBetter();
 evaluate();
 }
}

 Table 1c: Pseudo-code of the differential evolution (DE) algorithm.

 13

The process is repeated for a fixed number of iterations and the optimization

result is the best recorded candidate solution and fitness at the end of the run.

3.4.4 Random Search (RS)

The random search algorithm guesses solutions instead of using a heuristic (see

table 1d) and does not maintain a population. It iteratively generates random

candidate solutions j by assigning random uniform distributed values within the

medoid domain, i.e.,),(maxmin xxUj = and records the best candidate solution for

a fixed number of iterations. No operators or selection schemes are applied to guide

the search. Random search is often used as a lower bound algorithm for

performance comparison with heuristic search methods.

void random_search()
{
 initialize();
 evaluate();
 saveAsBestSolution();
 for (int i=0; i<numIterations; i++) {
 createRandomSolution();
 evaluate();
 saveIfBetterSolution();
 }
}

 Table 1d: Pseudo-code of the random search (RS) algorithm.

4 Experimental Set-Up

4.1 Benchmark data

The algorithms have been tested in comparison with the nominal classification,

random search and the k-means algorithm regarding the following artificial and real

world datasets.

4.1.1 Artificial data

We generated six different types of artificial datasets (s1, s2, s3, s4, s5, s6) from

multivariate normal distributions with different parameter configurations. For each

type we generated five datasets. Table 8 in Appendix A describes the process that

generated these data in detail. Datasets of type s1, s3 and s5 have three, six and nine

non-overlapping spherical clusters of twenty objects with three features each.

Datasets of type s2, s4 and s6 have three, six and nine partially overlapping

spherical clusters of twenty objects with three features each respectively.

 14

Figure 2(a) and 2(b) show the two and three dimensional plots of observations

for one of the randomly generated datasets of type s1, and figure 2(c) and 2(d) show

the two and three dimensional plots of observations in one of the randomly

generated datasets of type s2 respectively. Notice the non-overlapping and partially

overlapping structure of the clusters.

Figure 2: Example of two artificial datasets with three non overlapping (type s1 (a)-(b)) and
overlapping clusters (type s2 (c)-(d)) of twenty objects with three features each.

4.1.2 Real world data

In addition to the artificial data, we used four well-known real-world datasets

from the Machine Learning Repository (Merz et al. 1997) for further investigation.

They are:

- Fisher’ s Iris dataset (n=150, p=4, g=3).

The dataset consists of three different species of iris flower: Iris setosa, Iris

virginica and Iris versicolour (see figure 3). For each species, fifty samples with

four features each (sepal length, sepal width, petal length and petal width) were

collected.

 15

Figure 3: The iris dataset. Iris setosa (‘+’), Iris versicolor (’ o’), Iris virginica (‘ x’)

- Wisconsin Breast Cancer dataset (n=683, p=9, g=2).

This dataset consists of 683 objects characterized by nine features: clump

thickness, cell size uniformity, cell shape uniformity, marginal adhesion, single

epithelial cell size, bare nuclei, bland chromatin, normal nucleoli and mitoses. There

are two categories in the data: malignant (444 objects) and benign (239 objects).

- Ripley’s glass dataset (n=214, p=9, g=6).

The data were sampled from six different type of glass: building windows float

processed (70 objects), building windows non float processed (76 objects), vehicle

windows float processed (17 objects), containers (13 objects), tableware (9

objects), headlamps (29 objects) with nine features each: refractive index, Sodium,

Magnesium, Aluminum, Silicon, Potassium, Calcium, Barium and Iron.

- Vowel dataset (n=871, p=3, g=6).

This dataset consists of 871 Indian Telugu vowel sounds. The dataset has three

features corresponding to the first, second and third vowel frequencies and six

overlapping classes { δ (72 objects), a (89 objects), i (172 objects), u (151 objects), e

(207 objects), o (180 objects)} .

Glass and Vowel datasets have clusters, which are strongly overlapping.

Table 2 below summarizes the main characteristics of the artificial and real-

world dataset investigated.

 16

Table 2: Characteristics of the datasets considered

Name #Objects #Clusters #Features Objects per Cluster

Artificial Data

s1 60 3 3 20

s2 60 3 3 20

s3 120 6 3 20

s4 120 6 3 20

s5 180 9 3 20

s6 180 9 3 20

Real World Data

Iris 150 3 4 50

Cancer 683 2 9 444.239

Glass 214 6 9 70,76,17,13,9,29

Vowel 870 6 3 72,89,172,151,207,180

4.2 Algorithmic settings

For the GA, PSO, and DE, we conducted several pre-experiments to determine

one parameter setting per algorithm that yields the best performance with respect to

all datasets.

The performance bottle-neck in all three search heuristics is the fitness

evaluation of candidate solutions. Thus, for a fair performance comparison, all

algorithms had the same number of fitness evaluations, which we set to 100.000.

For the GA, PSO, and DE the number of fitness evaluations is the product of the

population size times the number of iterations. For the random search algorithm

(RS), we evaluated 100.000 randomly created points in the search space and

recorded the best result.

For the GA, PSO, and DE we used the following parameter settings shown in

table 3 (the RS algorithm has no parameters):

Table 3: Parameters of genetic algorithm, particles swarm optimization and Differential Evolution.
The inertia weight of the PSO was linearly decreased from 1.0 to 0.7 during the 2000 iterations of
the run.

GA PSO DE

Parameter Value Parameter Value Parameter Value

Population size 100 Population size 50 Population size 50

No. of iterations 1000 No. of iterations 2000 No. of iterations 2000

Crossover rate 1.0 Inertia weight 1.0 → 0.7 Crossover rate 0.9

Mutation rate 1.0 minϕ 0.0 Scaling factor f 0.3

Mutation sigma 0.05 maxϕ 2.0

Elite size 10 χ 1.0

 17

In our preliminary experiments (not reported in this paper), we noticed that

initialization with random candidate solutions for the medoids resulted in many

infeasible solutions for the harder problems (often up to 90%), such as the glass

data, which is a bad starting condition for population-based heuristics. Instead, we

randomly selected data points of the datasets and used them as candidate solutions

for the medoids during initialization in all final experiments, which yielded a much

higher proportion of feasible candidate solutions and better overall results for the

GA, PSO, and DE.

4.3 Implementation

We implemented our algorithms from scratch in C++ with Microsoft

VisualStudio .NET except for using the MatLab C++ library for fast calculcation of

matrix determinants. All experiments were run in Windows XP on a DELL latitude

laptop PC and a DELL desktop PC both with Intel P4 2 GHz processors.

5 Results

5.1 Artificial data clustering

Regarding the artificial datasets, we conducted experiments for the thirty datasets

(five variations of six data types), which we repeated 10 times for the stochastic

algorithms RS, GA, PSO, and DE. Table 4 reports the mean and standard error of

the mean best fitness over ten runs for each of the five datasets per data type.

 18

Table 4: Mean Values and Standard Errors in the analysis of artificial datasets.
Column 1: data type (s1-s6), column 2: clustering criteria (MC = Marriott Criterion, TRW = Trace
of the within matrix, VRC = Variance Ration Criterion), and columns 3-7: mean fitness with the
standard error in brackets. The best fitness values are marked in bold.

For the simple datasets of type s1 and s2, GA, PSO and DE always reached the

same mean values with standard error zero. Even RS obtained the same fitness with

standard error zero in all experiments except one (type s2- TRW criterion), whereas

k-means achieved the same result as GA, PSO, and DE for dataset s2, but failed in

many runs for s1.

The more challenging datasets of type s3, s4, s5 and s6 revealed superior

performance of GA, PSO and DE compared to RS and k-means by consistently

obtaining better mean fitness values with lower standard errors. GA, PSO and DE

converged consistently to the same candidate solutions with the same fitness and

standard error zero for datasets of type s3 (except for PSO-VRC). DE maintains

such robust convergence also for the datasets of type s4 (except for MC) and

datasets of type 5.

In conclusion, the harder the clustering problem, the more it pays-off to apply

population-based heuristics. Moreover, comparing the population-based heuristics,

DE clearly obtains the best results both in terms of accuracy (mean fitness) and

robustness (variance of the repeated results).

dataset criterion k-means RS GA PSO DE
MC 0.229 (0) 0.229 (0) 0.229 (0) 0.229 (0)

s1 TRW 218.50 (100.77) 167.99 (0) 167.99 (0) 167.99 (0) 167.99 (0)
VRC 332.13 (0) 332.13 (0) 332.13 (0) 332.13 (0)
MC 0.516 (0) 0.516 (0) 0.516 (0) 0.516 (0)

s2 TRW 404.23 (0) 404.26 (0.1733) 404.23 (0) 404.23 (0) 404.23 (0)
VRC 134.15 (0) 134.15 (0) 134.15 (0) 134.15 (0)

MC 0.8415 (0.1003) 0.2343 (0) 0.2343 (0) 0.2343 (0)

s3 TRW 670.76 (169.75) 665.49 (71.3147) 335.48 (0) 335.48 (0) 335.48 (0)

VRC 573.59 (91.4623) 1150.39 (0) 1150.27 (0.5745) 1150.39 (0)

MC 1.0956 (0.0684) 0.4615 (0.0026) 0.4650 (0.0146) 0.4593 (0.0005)

s4 TRW 983.21 (134.55) 1195.8 (77.2703) 804.53 (1.2116) 808.16 (13.8201) 803.76 (0)

VRC 303.6 (15.0845) 481.2 (0.691) 481.38 (0.644) 481.68 (0)

MC * 0.3569 (0.1166) 0.5503 (0.1719) 0.2183 (0)

s5 TRW 1123.96 (224.43) * 630.79 (85.5994) 798.64 (160.31) 533.72 (0)

VRC * 1998.71 (247.53) 1608 (319.5) 2323.16 (0)

MC 1.872 (0.3243) 0.7345 (0.0808) 0.6213 (0.1125) 0.4687 (0.0015)

s6 TRW 1515.90 (193.68) 2817.92 (558.52) 1373.56 (71.0108) 1310.54 (94.9363) 1192.2 (0.8476)

VRC 421.42 (73.2023) 898.63 (43.2029) 927.18 (74.279) 1041.59 (0.6551)

 19

5.2 Real-world data benchmarks

Apart from the artificial datasets, we conducted experiments with all algorithms

for the four machine learning data benchmarks and repeated each run 30 times. The

results are shown in table 5.

Table 5: Mean values of the optimal fitness values and standard Errors over thirty runs in the analysis
of real world datasets. Columns 4-8 show the mean and standard errors (in brackets) of the best
fitnesses over 30 runs. The best results are marked in bold.

Our results clearly show that Fisher's iris dataset is not sufficiently challenging to

compare the performance between advanced clustering algorithms despite its great

popularity in the clustering community. Even the random search algorithm could

identify the same optimal partition in every run for TRW and VRC, whereas k-means

frequently converged to local optima. By exhaustive search, we have verified that

the best partition found corresponds to the global optimum of the corresponding

fitness function.

Regarding the cancer data, k-means is as robust as GA and DE and converges to

the same fitness value in every run, whereas for the TRW criterion, PSO has a mean

value of 19324 and the approximated confidence interval at 95% level

([19323.21,19324.79]) does not include the optimal value 19323. For the VRC, GA,

PSO and DE have equivalent results, whereas RS cannot compete. In contrast, for

MC, PSO reaches the minimum mean with standard error close to zero. This is the

only case in our experiments, where DE did not obtain the best mean value.

However, the approximated confidence interval of the DE result at 95% level

([0.3508,0.3584]) contains the PSO mean fitness result, and thus the DE and PSO

results are yet not significantly different. In all other experiments, DE always

Dataset Criterion k-means RS GA PSO DE
MC 0.1995 (0.0002) 0.1984 (0) 0.1984 (0) 0.1984 (0)

iris TRW 8950.18 (449.79) 7885.14 (0) 7885.14 (0) 7885.14 (0) 7885.14 (0)

VRC 561.63 (0) 561.63 (0) 561.63 (0) 561.63 (0)

MC 0.3733 (0.0019) 0.3565 (0.0027) 0.3527 (3.51e-005) 0.3546 (0.0019)

cancer TRW 19323 (0) 19361 (3.3296) 19323 (0) 19324 (0.3944) 19323 (0)

VRC 1022.28 (0.3555) 1026.26 (0) 1026.26 (0.0002) 1026.26 (0)

MC 0.06463 (0.0017) 0.02661 (0.0009) 0.03176 (0.0010) 0.01984 (0.0003)

glass TRW 366.98 (6.59) 393.21 (2.223) 341.09 (1.5999) 339.04 (0.9505) 336.06 (0)

VRC 101.05 (0.9564) 121.94 (0.7799) 122.74 (0.578) 124.62 (0)

MC 0.4563 (0.0051) 0.3199 (0.0015) 0.3032 (0.0024) 0.2906 (0.0008)

vowel TRW 31687462 (229932) 34898130 (183388) 30943106 (13606) 30734068 (6467.23) 30690785 (1816.64)
VRC 1278.7 (7.14) 1450.45 (0.9677) 1463.33 (0.3809) 1465.55 (0.1156)

 20

reaches the best mean fitness among all algorithms with a lower standard error than

GA and PSO.

The second set of experiments on real-world data confirms the superior

performance of the population-based heuristics. Simple datasets, however, can be

analysed equally well with almost any kind of clustering algorithm, even random

search. Substantial performance differences occur for challenging clustering

problems with a large number of objects and clusters as well as overlapping cluster

shapes. Moreover, DE turns out to be more robust and effective than GA and PSO.

Finally, we have computed the mean number of misclassified items, which is the

average number of objects that were assigned to clusters other than according to the

nominal classification. Table 6 reports the mean values and standard errors.

DE has a standard error smaller than one in all cases except for the cancer data

with MC criterion (S.E.=1.71) and for vowel data with MC criterion (S.E.=5.85).

Table 5 shows that in the five cases where DE does not identify the same partition in

all 30 runs, the uncertainty in allocating objects to different groups is very small and

related to few objects.

Table 6 Mean Values of the error with respect to the nominal classification and standard errors
over thirty runs in the analysis of real world datasets.

Moreover, table 6 shows that there was no case where the number of

misclassified items was zero, which can be explained by the data shown in table 7.

Columns 3 and 4 in table 7 show the fitness values for the three different criteria in

correspondence of the nominal classification and the according best mean fitness by

the clustering algorithms reported in table 6.

In all cases, the best mean values of the clustering algorithms are better than the

corresponding fitnesses of the nominal classification for TRW and MC

(minimization) as well as for VRC (maximization). This result can be explained by

outliers, anomalous data and errors in collecting data. For example, figure 4 shows a

dataset criterion k-means RS GA PSO DE
MC 3.03 (0.16) 3 (0) 3 (0) 3 (0)

iris TRW 23.83 (3.31) 16 (0) 16 (0) 16 (0) 16 (0)

VRC 16 (0) 16 (0) 16 (0) 16 (0)

MC 79.17 (0.67) 80.43 (2.36) 81.27 (0.48) 81.13 (1.71)

cancer TRW 27 (0) 27.43 (0.31) 27 (0) 27 (0.05) 27 (0)

VRC 28 (0.37) 27 (0) 26.87 (0.06) 27 (0)

MC 106.9 (0.74) 101.87 (0.57) 104.33 (0.58) 107.43 (0.69)

glass TRW 104.60 (1.26) 106.53 (0.71) 98.6 (0.25) 98.2 (0.19) 98 (0)

VRC 105.2 (0.98) 98.83 (0.25) 98.43 (0.27) 98 (0)

MC 415.97 (7.07) 363.97 (11.18) 355.73 (9.44) 291.47 (5.85)

vowel TRW 417.47 (5.95) 420.77 (5.85) 454.4 (1.71) 449.13 (1.36) 451.4 (0.20)

VRC 420.8 (5.29) 448.97 (2.08) 447.57 (1.90) 450.37 (0.78)

 21

2 dimensional plot of the iris data (sepal length vs. petal width), where data have

been grouped using different colors (red= ‘setosa’, green=‘versicolor’ , blue=

‘virginica’) according to the nominal classification (‘+’) and to the optimal partition

for MC (‘o’). The three arrows in the figure mark those data points, where objects

have been allocated to different groups by the MC optimal partition and the nominal

classification. These data points are situated on the boundary between the two

groups and could be reasonably considered to belong to both species. Moreover, the

choice of an inappropriate fitness criterion can prevent the detection of the natural

structure behind the data, such as a criterion assuming spherical shapes of the

clusters when clusters are non-spherical.

Table 7: Comparison between the fitness value in correspondence of the nominal classification and
the optimal mean values determined by the clustering algorithms.

dataset criteria Nominal
Optimal

Mean value

1465.55

336.061

0.020

124.616

7885.14

0.198

561.628

19323.2

0.353

1026.3

30690800

0.291

2.826

19.702

0.6267

912

589.18

911.2

65984000

1.0829

8929.70

0.211

487.331

20707

glass

TRW

MC

VRC

vowel

TRW

MC

VRC

cancer

TRW

MC

VRC

iris

TRW

MC

VRC

 22

Figure 4: Iris Data: Nominal Classification vs. MC optimal Partition

7 Discussion and Conclusions

In this paper, we compared the performance of GAs, PSO and DE with k-means

and RS for a medoid evolution approach to partitional clustering. Both, for artificial

and real-world data, we found that all three population-based heuristics obtained

very good results. The simple clustering problems of our datasets could be solved by

any method, even RS which we used as a lower bound algorithm for comparison.

However, for more complex datasets with many features, many clusters, and

overlapping clusters, we found substantial performance differences between the

investigated algorithms. Here, the three population-based heuristics were

unquestionably superior compared to k-means and RS, which we expected for the

GA according to earlier results reported in the literature.

The most important conclusion of our experiments is that DE is clearly and

consistently superior compared to GAs and PSO both in respect to precision as well

as robustness of the results (i.e. very similar results of repeated runs). The latter is

an important characteristic from an end-user perspective, since a clustering

algorithm must not only be accurate, but also produce reliable and reproducible

results. Previous studies on DE in other domains of numerical optimization came to

similar conclusions regarding its performance, but yet the algorithm is surprisingly

unknown and has not been appropriately advertised. Our study shows for the first

 23

time the superior potential of DE in partitional clustering. Apart from superior

performance, one should note that DE is very easy to implement (even simpler than

PSO and GAs) and requires very little parameter tuning compared to substantial

tuning for GAs and PSOs. Also in terms of run-time considering the same number

of fitness evaluations, DE is faster than GA, in particular when the fitness

evaluation is very short like in case of simple clustering problems.

Despite the convincing performance of all three population-based heuristics,

none of the clustering experiments was without misclassification with respect to the

nominal classification, which was what we expected. Interestingly, we found that

the final fitness obtained by our algorithms was much better than the fitness of the

nominal classification, which shows that the misclassification could not be

explained by the optimization performance. Instead, misclassification is the result of

the underlying assumptions of the clustering fitness criteria (such as spherical shape

of the clusters), outliers in the dataset, errors in collecting data and human errors in

the nominal solutions. This is indeed not a negative result. In fact, the differences of

a clustering solution based on statistical criteria compared to the nominal

classification can reveal interesting data points and anomalies in the dataset. In this

way, a clustering algorithm can be used as a very useful tool for data pre-analysis.

Our study shows that DE rather than GAs should receive primary attention for

numerical optimization in partitional cluster algorithms with great potential for data

analysis tools.

Acknowledgements

The authors would like to thank the Danish Research Council for partial

financial support of this study in context of the EVALife project. This work has

been done while Sandra Paterlini was visiting EVALife Group, Aarhus Univ. (April

- June 2003).

 24

References

Bandyopadhyay S., Murthy C.A., and Pal S.K., 1995. Pattern classification with

genetic algorithms, Pattern Recognition Letters, 16, 801-808.

Bandyopadhyay S., Murthy C.A., and Pal S:K., 1998. Pattern classification using

genetic algorithm:determination of H, Pattern Recognition Letters, 19, 1171-1181.

Bandyopadhyay S., Murthy C:A., and Pal S.K., 1999. Theoretic performance of

genetic pattern classifier, Journal of The Franklin Institute, 336, 387-422.

Bandyopadhyay S., Pal S.K., and Murthy C.A., 1998. Simulated Annneling

based pattern classification, Journal of Information Sciences, 109, 165-184.

Bandyopadhyay S., and Maulik U., 2002a. An evolutionary technique based on

K-means algorithm for optimal clustering in RN, Information Sciences, 146, 221-
237.

Bandyopadhyay S., and Maulik U., 2002b. Genetic clustering for automatic

evolution of clusters and application to image classification, Pattern Recognition,
35, 1197-1208.

Brucker P., 1978. On the complexity of clustering problems. In: Beckmenn M.,

Kunzi H.P. (Eds.), Optimization and Operations Research, Lecture Notes in
Economics and Mathematical Systems, Berlin, Springer, vol.157, 45-54.

Calinski T., and Harabasz J., 1974. A dendrite method for cluster analysis,

Communication in Statistics, 3(1), 1-27.

Chiou Y.C., and Lan L.W., 2001. Theory and Methodology Genetic clustering

algorithms, European Journal of operational Research, 135, 413-427.

Everitt B.S., 1993. Cluster Analysis. Halsted Press, third edition.

Falkenauer E., 1998. Genetic Algorithms and Grouping Problems, John Wiley

and Son, Chichester.

Fogel D.B., 1998. Evolutionary Computation: The Fossil Record. IEEE Press,

Piscataway, NJ.

Fogel L.J., Owens A.J. and Walsh M.J., 1966. Artificial intelligence through

simulated evolution, New York, John Wiley.

Forgy E.W., 1965. Cluster Analysis of Multivariate Data: Efficiency versus

Interpretability of classification, Biometrics, 21, 768-9.

Friedman H.P., and Rubin J., 1967. On some invariant criterion for grouping

data, Journal of the American Statistical Association 63, 1159-1178.

Holland J.H., 1975. Adaptation in Natural and Artificial Systems. University of

Michigan Press, Ann Harbor.

 25

Kennedy J. and Eberhart R.C., 1995. Particle swarm optimisation.In:

Proceedings of the 1995 IEEE International Conference on Neural Networks,vol. 4,
IEEE Press, Piscataway, NJ, 1942-1948.

Krishna K., and Murty M.N., 1999. Genetic K-means Algorithm, IEEE

Transaction on systems, man and cybernetics, 29.

Kuncheva L., 1995. Editing for the k-nearest neighbors rule by a genetic

algorithm, Pattern Recognition Letters, 16, 809-814.

Marriott F.H.C., 1982. Optimization methods of cluster analysis, Biometrics, 69,

2, 417-422.

Maulik U., and Bandyopadhyay S., 2000. Genetic algorithm-based clustering

technique, Pattern Recognition, 33, 1455-1465.

Merz C., Murphy P., and Aha D., 1997. UCI repository of Machine Learning

databases. Department of Information and Computer Science, University of
California, Irvine. http://www.ics.uci.edu/mlearn/MLRepository.html.

Murthy C.A., and Chowdury N., 1996. In search of optimal clusters using

genetic algorithm, Pattern Recognition Letters, 17, 825-832.

Paterlini S., and Minerva T., 2003. Evolutionary Approaches for Cluster

Analysis. In A. Bonarini, F. Masulli, G. Pasi (eds.) Soft Computing Applications.
Springer-Verlag, Berlin. 167-178.

Raghavan V.V., and Birchand K., 1979. A clustering strategy based on a

formalism of the reproductive process in a natural system. In: Proceedings of the
Second International Conference on Information Storage and Retrieval, 10-22.

Rechenberg I., 1973. Evolutionsstrategie: Optimierung Technischer Systeme

nach Prinzipien der Biologischen Evolution, Frommann-Holzboog, Stuttgart.

Sarafis I, Zalzala A.M.S, and Trinder P., 2002. A Genetic Rule-Based Data

Clustering Toolkit. In: Fogel D.B., El-Sharkawi M.A., Yao X., Greenwood G., Iba
H., Marrow P., and Shackleton M., 2002, Proceedings of the 2002 Congress on
Evolutionary Computation CEC2002, IEEE Press, 1238-1243.

Schwefel, H-P., 1975. Evolutionsstrategie und Numerische Optimierung,

Dissertation, Technical University of Berlin.

Srikanth R., George R., Warsi N., Prabhu D., Petri F.E., and Buckles B.P, 1995.

A variable-length genetic algorithm for clustering and classification, Pattern
Recognition Letters, 16, 789-800.

Storn R., and Kenneth P., 1995. Differential Evolution - a Simple and Efficient

Adaptive Scheme for Global Optimization over Continuous Spaces. Technical
Report TR-95-012, ICSI.

Tseng L.Y., and Yang S.B., 2001. A genetic approach to the automatic clustering

problem, Pattern Recognition, 34, 415-424.

 26

Xiao X., Dow E., Eberhart R., Ben Miled Z. and Oppelt R.J., 2003. Gene
Clustering using Self-Organizing Maps and Particle Swarm Optimization. In:
Proceeding of Second IEEE International Workshop on High Performance
Computational Biology, Nice, France.

 27

Appendix A

Table 8: Parameters configuration of the random generative processes of the artificial datasets.

Column 1 reports the dataset types, column 2 the profile data matrix structure (e.g. the profile matrix X

is made of three sub-matrices Xi (i=1,..,3) of size 20x3 with data generated from multivariate normal

distribution with parameters as reported in column 4) , column 3 the size of the sub-matrices and the

generative random process and column 4 the numerical parametric values for each random variable.

Datasets are random realizations of the multivariate normal random variables X1,…X9, with parameters

specified in column 4.

DATASET DATA Matrix Distribution Moments
X1~N(� 1, � 1) (20x3) � 1=[1,1,1], � 1=I

X2~N(� 2, � 2) (20x3) � 2=[5,5,5], � 2=I

X3~N(� 3, � 3) (20x3) � 3=[9,9,9], � 3=I

X1~N(� 1, � 1) (20x3) � 1=[1,1,1], � 1=2I

X2~N(� 2, � 2) (20x3) � 2=[5,5,5], � 2=3I

X3~N(� 3, � 3) (20x3) � 3=[9,9,9], � 3=2I

X1~N(� 1, � 1) (20x3) � 1=[1,1,1], � 1=I

X2~N(� 2, � 2) (20x3) � 2=[5,5,5], � 2=I

X3~N(� 3, � 3) (20x3) � 3=[9,9,9], � 3=I

X4~N(� 4, � 4) (20x3) � 4=[-3,-3,-3], � 4=I

X5~N(� 5, � 5) (20x3) � 5=[-7,-7,-7], � 5=I

X6~N(� 6, � 6) (20x3) � 6=[-11,-11,-11], � 6=I

X1~N(� 1, � 1) (20x3) � 1=[1,1,1], � 1=2I

X2~N(� 2, � 2) (20x3) � 2=[5,5,5], � 2=3I

X3~N(� 3, � 3) (20x3) � 3=[9,9,9], � 3=2I

X4~N(� 4, � 4) (20x3) � 4=[-3,-3,-3], � 4=3I

X5~N(� 5, � 5) (20x3) � 5=[-7,-7,-7], � 5=2I

X6~N(� 6, � 6) (20x3) � 6=[-11,-11,-11], � 6=3I

X1~N(� 1, � 1) (20x3) � 1=[1,1,1], � 1=I

X2~N(� 2, � 2) (20x3) � 2=[5,5,5], � 2=I

X3~N(� 3, � 3) (20x3) � 3=[9,9,9], � 3=I

X4~N(� 4, � 4) (20x3) � 4=[-3,-3,-3], � 4=I

X5~N(� 5, � 5) (20x3) � 5=[-7,-7,-7], � 5=I

X6~N(� 6, � 6) (20x3) � 6=[-11,-11,-11], � 6=I

X7~N(� 7, � 7) (20x3) � 7=[-15,-15,-15], � 7=I

X8~N(� 8, � 8) (20x3) � 8=[13,13,13], � 8=I

X9~N(� 9, � 9) (20x3) � 9=[17,17,17], � 9=I

X1~N(� 1, � 1) (20x3) � 1=[1,1,1], � 1=2I

X2~N(� 2, � 2) (20x3) � 2=[5,5,5], � 2=3I

X3~N(� 3, � 3) (20x3) � 3=[9,9,9], � 3=2I

X4~N(� 4, � 4) (20x3) � 4=[-3,-3,-3], � 4=3I

X5~N(� 5, � 5) (20x3) � 5=[-7,-7,-7], � 5=2I

X6~N(� 6, � 6) (20x3) � 6=[-11,-11,-11], � 6=3I

X7~N(� 7, � 7) (20x3) � 7=[-15,-15,-15], � 7=2I

X8~N(� 8, � 8) (20x3) � 8=[13,13,13], � 8=3I

X9~N(� 9, � 9) (20x3) � 9=[17,17,17], � 9=2I

s4

s5

s6

s3

s1

s2

1

9

...

X

X

X

  =   

1

6

...

X

X

X

� �
� �

= � �
� �� �

1

9

...

X

X

X

  =   

1

2

3

X

X X

X

� 	

 �

=
 �

 ��

1

2

3

X

X X

X

� �
� �

= � �
� �� �

1

6

...

X

X

X

� �
� �

= � �
� �� �

