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Abstract: In recent years, many partitional clustering algorithms based on 

genetic algorithms (GA) have been proposed to tackle the problem of finding the 

optimal partition of a data set. Surprisingly, very few studies considered alternative 

stochastic search heuristics other than GAs or simulated annealing. Two promising 

algorithms for numerical optimization, which are hardly known outside the heuristic 

search field, are particle swarm optimisation (PSO) and differential evolution (DE). 

In this study, we compared the performance of GAs with PSO and DE for a medoid 

evolution approach to clustering, which Paterlini and Minerva (2003) introduced in 

a previous paper. Moreover, we compared these results with the nominal 

classification, k-means and random search (RS) as a lower bound. Our results show 

that DE is clearly and consistently superior compared to GAs and PSO for hard 

clustering problems, both in respect to precision as well as robustness 

(reproducibility) of the results. Only for simple data sets, the GA and PSO can 

obtain the same quality of results in contrast to k-means and RS, and, as expected, 

for trivial problems all algorithms can obtain comparable results. Apart from 

superior performance, DE is very easy to implement and requires hardly any 

parameter tuning compared to substantial tuning for GAs and PSOs. Our study 

shows that DE rather than GAs should receive primary attention in 

partitional cluster algorithms. 

 

Key-words: Cluster analysis, partitional clustering, differential evolution, 

particle swarm optimization, genetic algorithms. 
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1 Introduction 

In the last decades, cluster analysis has played a central role in a variety of fields. 

Clustering is often used as a tool for preliminary and descriptive data analysis and 

for unsupervised classification. Its main purpose is to identify homogeneous groups 

by finding similarities between objects regarding their characterising attributes. 

Moreover, cluster analysis can be used to summarize the shared characteristics of a 

group of objects by calculation of their centroids or baricentres.  

Partitional clustering algorithms determine a grouping solution by maximising 

the similarities among objects within the same groups while minimising the 

dissimilarities between different groups. Thus, the algorithmic task can be stated as 

an optimization problem. Statistical criteria that consider the within and the between 

variance scatter matrices can be used to quantify the goodness of the partitions and 

to determine the optimal one. Ideally, a clustering algorithm should be simple, 

efficient and capable of dealing with huge datasets. Moreover, it should be objective 

and robust for equivalent samples and able to detect different cluster shapes. 

Nowadays, the k-means algorithm is one of the most popular partitional 

clustering algorithms, because it is easy to implement and very efficient, due to its 

linear time complexity. However, its main drawbacks are that it converges to 

arbitrary local optima and that it cannot deal well with non-spherical shaped 

clusters.  

Many partitional clustering algorithms that have been introduced in recent years, 

are based on evolutionary algorithms, such as Genetic Algorithms (GA) (Holland 

1975), which are stochastic search heuristics inspired by Darwinian evolution and 

genetics. The key idea is to create a population of candidate solutions to an 

optimization problem, which is iteratively refined by alteration and selection of 

good solutions for the next iteration. Candidate solutions are selected according to a 

so-called fitness function, which evaluates their quality in respect to the 

optimization problem. In case of GAs, the alteration consists of mutation to 

randomly explore solutions in the local neighbourhood of existing solutions and 

crossover to recombine information between different candidate solutions. 

An important advantage of these algorithms is their ability to cope with local 

optima by maintaining, recombining and comparing several candidate solutions 

simultaneously. In contrast, local search heuristics, such as the stochastic simulated 

annealing algorithm, only refine a single candidate solution and are notoriously 

weak in coping with local optima. Deterministic local search, which is used in the k-

means algorithm, always converges to the nearest local optimum from the starting 
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position of the search. The only way to explore the search space better is to re-run 

the algorithm while initialising the search from different starting points. 

Therefore, GAs are obviously an interesting alternative to k-means and simulated 

annealing in clustering. However, in the scientific community of heuristics, simple 

textbook GAs are known to have inferior performance compared to advanced 

versions and other modern optimization approaches and are rather used as a lower 

bound for performance comparison. Two promising and recently introduced 

approaches to numerical optimization, which are rather unknown outside the 

heuristic methods field, are particle swarm optimisation (PSO) and differential 

evolution (DE).     

In this study, we compared the performance of GAs with PSO and DE as 

heuristic search methods for the medoid evolution algorithm previously introduced 

by Paterlini and Minerva (2003) regarding a set of artificial and real-world machine 

learning data sets. Moreover, we compared these results with the nominal 

classification, k-means and random search (RS) as a lower bound technique. To our 

knowledge, there have been only a few recent and rather unknown studies on PSOs 

(e.g. Xiao et al. 2003) and no known previous study on DE in clustering. 

 

The remaining sections of the paper are organized as follows. Section 2 gives an 

overview of the application of GAs to clustering problems. Section 3 describes the 

medoid evolution approach and introduces the search heuristics. The following 

section 4 describes the experimental set-up regarding the algorithmic parameters, 

benchmark problems, and run schedule. Section 5 reports the main results, and 

finally, section 6 comments on our results and concludes our study. 

 

2 Scientific Background 

Genetic algorithms have been applied to partitional clustering in many ways, 

which can be grouped into three main categories: (i) direct encoding of the object-

cluster association, (ii) encoding of cluster separating boundaries, and (iii) 

centroid/medoid and variation parameter encoding for each cluster. 

 

To our knowledge, the first application of GAs to clustering was introduced by 

Raghavan and Birchand (1979) and it belongs to the first approach of using a direct 

encoding of the object-cluster association. The idea in this approach is to use a 

genetic encoding that allocates directly n objects to g clusters, such that each 

candidate solution consists of n genes with integer values in the interval [1, g]. For 
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example, for  n=4 and g=2 the encoding "2112" allocates the second and the third 

object to cluster 1 and the first and fourth object to cluster 2 and therefore the 

following clusters ({ 14} , {23} ) are identified. Based on this problem representation, 

the GA tries to find the optimal partition according to a fitness function which 

measures the partition goodness. Since 1979, many authors have used this approach. 

It has been shown that such an algorithm outperforms k-means in the analysis of 

simulated and real datasets (e.g. Murthy and Chowdury 1996). However, the 

representation scheme has a major drawback because of its redundancy, for 

instance, "2112" and "1221" represent the same grouping solution ({ 14} , { 23} )). 

Falkenauer (1998) tackled this problem in an elegant way. In addition to the 

mentioned encoding of n genes representing each object-cluster association, they 

represent the group labels as additional genes in the encoding and apply ad hoc 

evolutionary operators on them. 

 

The second kind of GA approach to partitional clustering is to encode cluster 

separating boundaries. Bandyopadhyay et al. (1995, 1998, 1999) used GAs to 

determine hyperplanes as decision boundaries, which divide the attribute feature 

space to separate the clusters. For this they encode the location and orientation of a 

set of hyperplanes with a gene representation of flexible length. Apart from 

minimizing the number of misclassified objects, their approach tries to minimize the 

number of hyperplanes required. Another interesting and more flexible approach by 

Bandyopadhyay and Maulik (2002b) is to determine the boundaries between 

clusters by connected linear segments instead of rigid planes. Sarafis et al (2002) 

introduced an approach that identifies clusters by evolving a representation of linear 

boundaries around clusters in the object attribute space, which they call rule-based 

data clustering. 

 

The third way to use GAs in partitional clustering is to encode a representative 

variable (typically a centroid or medoid) and optionally a set of parameters to 

describe the extend and shape of the variance for each cluster. Srikanth et al. (1995) 

proposed an approach, which encodes the centre, extend, and orientation of an 

ellipsoid for each cluster. Moreover, many authors proposed cluster centroids, 

baricentres, or medoids as representation points to allocate each object to a specific 

cluster (e.g. Maulik and Bandyopadhyay 2000, Chiou and Lan, 2001, 

Bandyopadhyay and Maulik 2002a, Paterlini and Minerva 2003). The idea is to 

determine a representation point for each cluster and to allocate each object to the 

cluster with the nearest representation point, where 'nearest' refers to a distance 
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measure, such as Euclidean distance. The fitness of a candidate solution is then 

computed as the adequacy of the identified partition according to a statistical 

criterion, such as the Marriott or variance ratio criterion (see section 3.2). Many 

studies have shown that this approach is more robust in converging towards the 

optimal partition than classic partitional algorithms (e.g. Maulik and 

Bandyopadhyay 2000, Chiou and Lan, 2001, Bandyopadhyay and Maulik 2002a, 

Paterlini and Minerva 2003 ). 

 

Finally, some authors introduced hybrid clustering algorithms, which combine 

classic clustering techniques with GAs. For example, Krishna and Murthy (1999) 

introduced a GA with the direct encoding of object-cluster associations by 

Raghavan and Birchand (1979), but applied k-means to determine the quality of the 

GA candidate solutions. For this, each GA candidate solution is used as a starting 

point for a k-means run. The quality of the solution found by the k-means run is then 

used as the fitness of the GA candidate solution. 

 

Compared to the great number of studies on partitional clustering with GAs, only 

a couple of applications using PSO (e.g.: Xiao et al. 2003) and no application using 

DE (to our knowledge) can be found in literature. Moreover, there have been 

substantial research efforts on GAs in hierarchical clustering (e.g. Kuncheva 1995, 

Tseng and Yang 2001) as well as applications of simulated annealing and other 

local search methods to clustering that are beyond the scope of this paper. 

  

3 The Medoid Evolution Algorithm 

3.1  The Clustering Problem 

Let O={o1,o2, …, on} be a set of n objects and let Xnxp be the profile data matrix, 

with n rows and p columns. Each i-th object is characterised by a real-value p-

dimensional profile vector xi (i=1,..,n), where each element xi j in xi corresponds to 

the j-th real value feature (j=1,…,p) of the i-th object ( i=1,…,n).  

 Given Xnxp, the goal of a non-hierarchical clustering algorithm is to determine a 

partition G={C1,C2,,…,Cg} 1
( . . : , ; , ; )

g

k k h kk
i e C k C C k h C

=
≠ ∅ ∀ ∩ = ∅ ∀ ≠ =U O  

such that objects which belong to the same cluster are as similar to each other as 

possible, while objects which belong to different clusters are as dissimilar as 

possible. For this, a measure of adequacy of the partition must be defined. The 

clustering problem is to find the partition G*  that has optimal adequacy with respect 
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to all other feasible solutions G={G1, G2, …, GN(n,g)} (i.e.: Gi 
�

 Gj ,i
�

 j) where 
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1
( , ) ( 1) ( )

!

g
k g n

k
k

N n g g k
g =

= − −∑ is the number of all feasible partitions. This is 

equivalent to  

  ( , )nxpoptimise f X G
G

 

where G corresponds to a single partition in G and f(*) is a statistical-

mathematical function that quantifies the goodness of the partition (see next section 

3.2).  

It has been shown that the clustering problem is NP-hard when the number of 

clusters exceeds three (Brucker 1978).   

 

3.2 Statistical Clustering Criteria 

Different statistical criteria have been proposed to measure the degree of 

adequacy of a partition and to allow comparison across different partitions (Marriott 

1982). These criteria usually involve transformations, such as the trace or 

determinant, of the pooled-within groups scatter matrix (W) and of the between 

groups scatter matrix (B).  

The pooled-within scatter matrix, W, is defined as: 

1

  
g

k
k

W
=

=∑W where Wk is the variance matrix of the objects’  features allocated 

to cluster Ck (k=1,…, g). Thus, if xl
(k) indicates the l-th object in cluster Ck and nk the 

number of objects in cluster Ck. 
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The between scatter matrix, B , is defined as  

∑∑
==

=−−=
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Then, the total scatter matrix T, of the n observations can be decomposed as 

T=B+W. 

 

In our study, we consider three statistical criteria to measure the adequacy of the 

partition and define the optimisation problem   ( , )nxpoptimise f X G
G

respectively as: 

1)   ( )minimise trace
G

W    
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TRW – Trace Within Criterion (Friedman and Rubin 1967).  

 This criterion assumes implicitly a low correlation among measurements, gives 

equal importance to the variance within the groups, tends to create spherical clusters 

and allows orthogonal transformations of the data. It can be shown that minimizing 

trace(W) is equivalent to minimizing the sum of eigenvalues of W. 

 

2)   
trace( )/(g -1)

maximise
trace( )/(n- g)G

B
W

    

 VRC - Variance Ratio Criterion (Calinski and Harabasz 1974). 

 (n-g) are the degrees of freedom of the within scatter matrix and (g-1) are the 

degrees of freedom of the between scatter matrix. As for the Trace Within 

Criterion, the Variance Ratio Criterion assumes implicitly a low correlation among 

measurements, gives equal importance to the variance within the groups, tends to 

create spherical clusters and allows orthogonal transformations of the data. 

Moreover, in many cases, it can be used to identify the optimal number of groups by 

comparison of maximization results for different values of g. However, for some 

data sets, this method fails if the results increase monotically with larger values of g. 

  

3)  2 det( )
minimise g

det( )G

W
T

  

 MC - Marriott’s criterion (Marriott 1971 and 1982)  

 The Marriott criterion addresses the correlation between variables, detects 

elliptical clusters with axes that are not parallel to the coordinates, and allows linear 

(not singular) transformations of the data. It can be shown that minimizing det(W) is 

equivalent to minimizing the product of the eigenvalues of W. Marriott’s criterion is 

commonly used to search for clusters characterized by such a strong internal 

correlation that one or more eigenvalues are equal to zero. 

 

For further details about these and related criteria the reader is referred to Everitt 

(1993). Note that each cluster set kC of G must at least contains one object, i.e., 

≠kC ∅, which is not guaranteed by the encoding of the medoid evolution 

algorithm as we will explain in the following section.   

 

3.3 Fitness Evaluation and Search Space 

Central to population-based heuristics, such as GAs, is the concept of a 
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population of individuals, where each individual consists of an encoding of a 

candidate solution called chromosome (also: genes, genotype, or genome) and a 

fitness that indicates its quality. In our study, we used floating point arrays to 

encode representation points, hereafter called medoids, to be used in allocating 

objects to different clusters and therefore in determining a partition. Hence, if Xnxp is 

the profile matrix and g the number of clusters {C1,C2,,…,Cg } of the set of n objects 

O={o1,o2, …, on}, each chromosome in the population consists of p x g cells mkj 

(k=1,…,g, j=1,…,p). Each group of p cells, that corresponds to the vector mk, 

identifies the k-th medoid coordinates in the Rp space of the measurements. The g 

groups of p cells that constitute the vector m represent the g medoids of the clusters. 

Figure 1 shows an example for a problem with 3 clusters and 4 features. 

 

 

m11 m12 m13 m14 m21 m22 m23 m24 m31 m32 m33 m34 

  
m1 

medoid coordinates of cluster 1 
m2 

medoid coordinates of cluster 2 
m3 

medoid coordinates of cluster 3 
 

Figure 1. Example of a cluster problem encoding with 3 clusters and 4 features. 
 

In principle, any point in Rp could be considered as a possible choice for a 

medoid. However, it makes sense to restrict the search space to roughly the size of 

the profile matrix domain [xmin, xmax], which is more likely to contain good medoids.  

In our study, we decided to define the medoid domain to be 40% larger than the 

profile matrix domain, i.e., [xmin-0.2| xmax - xmin |, xmax + 0.2| xmax - xmin|].  

It is then necessary to define a mapping between the medoid search space and the 

clustering search space G={G1, G2, …, GN(n,g)}. The mapping that we used is inspired 

by Forgy’s approach of clustering (Forgy 1965). A partition H is determined by 

allocating each object to the nearest medoid, where 'nearest' refers to a distance 

metric, which is the Euclidean distance in our study. The adequacy of a feasible 

partition H is then evaluated by using one of the three statistical criteria (TRW, MC, 

VRC) described in section 3.2. Otherwise, if H is infeasible ( . .: )ki e C = ∅ , we 

penalize the candidate solution with a fitness worse than the worst fitness of a 

feasible solution. More formally the fitness function is defined as:   

{ }
{ }

1 2 ( , )

1 2 ( , )

( , )  if , ,...,
( , )

                if , ,...,

N n g
nxp

nxp N n g

f H H G G G
F

K H G G G

�
⊂ =  �

= �
⊄ =

��
X G

X m
G
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where m  is the vector of the medoids of a candidate solution,  f(.) is one of the 

statistical criteria TRW, VRC or MC and K is 108 if f(.) corresponds to TRW or MC 

and to -108 if f(.) corresponds to VRC respectively.   

Note that there is no one-to-one correspondence between the search space and 

the space of feasible partitions: different medoid vectors can identify the same 

partition H. Moreover infeasible solutions might occur (e.g.: objects are allocated to 

less than k clusters). 

 

3.4 Search Heuristics 

3.4.1 The Genetic Algorithm (GA) 

A GA is an evolutionary algorithm inspired by Darwinian evolution and 

genetics. Evolutionary algorithms have been originally introduced by Fogel et al. 

(1966) as evolutionary programming and Rechenberg (1973) and Schwefel (1975) 

as evolution strategies although the idea to use evolution as an inspiration for 

optimization dates back to the 1940s (for a complete overview see Fogel 1998). 

Later, John Holland (1975) introduced the term genetic algorithm (GA). The main 

algorithmic innovation in GAs is the introduction of a recombination operator called 

crossover that allows to recombine solutions of candidate solutions inspired by 

genetic reproduction. In our GA implementation (see table 1a), first a population of 

individuals containing the candidate solutions (encoded in floating point numbers) is 

created and the fitness of each individual is evaluated by the fitness function. The 

chromosomes of the start-up population are initialized with randomly chosen object 

feature vectors from the dataset. 

 

void genetic_algorithm() 
{ 
 initialize(); 
 evaluate(); 
 determineAndProtectElite(); 
 for (int i=0; i<numIterations; i++) { 
   selectNewPopulation(); 
   apply_crossover(); 
   apply_mutation(); 
   evaluate(); 
   determineAndProtectElite(); 
 } 
} 
    
 Table 1a: Pseudo-code of the genetic algorithm (GA). 

 

After initialization, the population is iteratively refined by selection of 

individuals for the next iteration, application of mutation and crossover operators, 
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and re-evaluation of the new population according to the fitness function. For 

selection we use tournament selection of size 2, i.e., for each individual j we choose 

another individual k randomly from the population, compare the fitnesses, and 

substitute j by k in the new population if k's fitness is better. Further, we use elitism 

with an elite size of 10, i.e., the 10 best individuals of the population in each 

generation are left unchanged by mutation and crossover. For this, we rank the 

individuals according to their fitness at the end of the evaluation phase. As the 

mutation operator, we use Gaussian mutation, such that  

)()1,0( min,max, iiii xxNjj −⋅⋅+= σ , 

where ij  is the i-th gene of individual j, N is the Gaussian normal distribution, 

and σ  the variance parameter of the mutation operator. The crossover operator in 

our algorithm is arithmetic crossover with  

iiiii bwawc ⋅−+⋅= )1(  

where c is the offspring genome of the parent genomes a and b, iw  a random 

weight of the interval [0, 1] and i = 1,..., n, with pgn ⋅=  (number of genes). The 

application of the crossover operator to a genome j means that j becomes parent a, 

parent b is chosen randomly from the population and the offspring c substitutes j. 

Both operators are applied to each individual in the population, which is not in the 

elite, with a probability pm for mutation and pc for crossover respectively. The 

algorithm terminates after a fixed number of iterations. The optimization result is 

the candidate solution and the fitness of the best individual in the last generation.  

  

3.4.2 Particle Swarm Optimization (PSO) 

Particle Swarm Optimization, which was introduced by Kennedy and Eberhard 

(1995) is inspired by the swarming behaviour of animals and human social 

behaviour. A particle swarm is a population of particles, where each particle is a 

moving object that 'flies' through the search space and is attracted to previously 

visited locations with high fitness. In contrast to the individuals in evolutionary 

computation, particles neither reproduce nor get replaced by other particles. 

Each particle consists of a position vector x� , which represents the candidate 

solution to the optimization problem, the fitness of solution x� , a velocity vector v�  

and a memory vector p
�

 of the best candidate solution encountered by the particle 

with its recorded fitness.  

The position of a particle is updated by  

( 1) ( ) ( 1)x t x t v t+ ← + +
� � �
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and its velocity according to  

1 2( 1) ( ( ) ( ( )) ( ( )))gv t wv t p x t p x tχ ϕ ϕ+ ← + − + −
� � � � � �

, 

where 1ϕ , 2ϕ  are uniform distributed random numbers within [ minϕ , maxϕ ] 

(typically minϕ = 0.0 and maxϕ = 2.0) that determine the weight between the 

attraction to position p
�

, which is the best position found by the particle so far and 

gp
�

 the overall best position found by all particles. A more general version of PSO 

considers gp
�

 as the best position found in a certain neighbourhood of the particle, 

which does not generally contribute to performance improvements. Note that 1ϕ  

and 2ϕ are newly generated for each component of the velocity vector. Moreover, 

the so-called inertia weight w  controls how much the particles tend to follow their 

current direction compared to the memorized positions p
�

 and gp
�

. Finally, the so-

called constriction factor χ  can be used to manipulate the overall velocity of the 

swarm. In our preliminary parameter tuning experiments we focused on the control 

of the inertia weight, which was decisive for the performance of the PSO. Moreover, 

the speed of the particles is limited by a maximum velocity maxv
�

, which is typically 

half of the domain size for each parameter in vector x
�

. 

The algorithm works as outlined in the pseudo-code of table 1b. 

 

void particle_swarm_optimization() 
{ 
 initialize(); 
 evaluate(); 
 updateParticleMemories(); 
 for (int i=0; i<numIterations; i++) { 
   updateVelocities(); 
   updatePositions(); 
   evaluate(); 
   updateParticleMemories();  
 } 
} 
    
 Table 1b: Pseudo-code of the particle swarm optimization (PSO) algorithm. 

 

The initialization of the algorithm corresponds to the description for the GA 

above, but additionally requires the initialization of the speed vectors, which are 

uniformly distributed random numbers in the interval [0, maxv
�

]. After initialization, 

the memory of each particle is updated and the speed and position update rules are 

applied. If the speed exceeds maxv
�

it is truncated to this value. Moreover, if a new 



 12 

position vector is outside the domain, it is moved back into the search space by 

adding the negative distance with which it exceeds the search space to the position 

vector. This process is applied to all particles and repeated for a fixed number of 

iterations. The optimization result is the best recorded candidate solution ( gp
�

 in the 

last iteration) and fitness at the end of the run. 

 

3.4.3 Differential Evolution (DE) 

Differential evolution (Storn and Price 1995) is a rather unknown approach to 

numerical optimization, which is very simple to implement, requires little or no 

parameter tuning, and is known for remarkable performance. After generating and 

evaluating an initial population, as described for the GA above, the solutions are 

refined as follows (see table 1c): For each individual genome j, choose three other 

individuals k, l, and m randomly from the population (with j≠k≠l≠m), calculate the 

difference of the chromosomes in k and l, scale it by multiplication with a parameter 

f and create an offspring by adding the result to the chromosome of m. The only 

additional twist in this process is that not the entire chromosome of the offspring is 

created in this way, but that genes are partly inherited from individual  j, such that 

  

�� � <−⋅+
=

                           otherwise  .

)1,0( if  )..(.
.

i

ciii
i genej

pUgenelgenekfgenem
geneo  

 

The proportion is determined by the so-called crossover probability cp  (an ill-

conceived term), which determines how many genes of the difference vector on 

average are copied to the offspring. More precisely, the operator iteratively copies 

consecutive genes (from a random starting point on and continuing with the first 

gene after the last gene has past) of the difference vector to the offspring until 

cpU ≥)1,0( . If the offspring o  is better than  j then  j is substituted by o .  

 

void differential_evolution() 
{ 
 initialize(); 
 evaluate(); 
 for (int i=0; i<numIterations; i++) { 
   createDifferenceOffspringsAndReplaceParentsIfBetter(); 
   evaluate(); 
 } 
} 
    
 Table 1c: Pseudo-code of the differential evolution (DE) algorithm. 
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The process is repeated for a fixed number of iterations and the optimization 

result is the best recorded candidate solution and fitness at the end of the run. 

  

3.4.4 Random Search (RS) 

The random search algorithm guesses solutions instead of using a heuristic (see 

table 1d) and does not maintain a population. It iteratively generates random 

candidate solutions j by assigning random uniform distributed values within the 

medoid domain, i.e., ),( maxmin xxUj =  and records the best candidate solution for 

a fixed number of iterations. No operators or selection schemes are applied to guide 

the search. Random search is often used as a lower bound algorithm for 

performance comparison with heuristic search methods. 

 

void random_search() 
{ 
 initialize(); 
 evaluate(); 
 saveAsBestSolution(); 
 for (int i=0; i<numIterations; i++) { 
   createRandomSolution(); 
   evaluate(); 
   saveIfBetterSolution(); 
 } 
} 
    
 Table 1d: Pseudo-code of the random search (RS) algorithm. 

 

4 Experimental Set-Up 

4.1 Benchmark data 

The algorithms have been tested in comparison with the nominal classification, 

random search and the k-means algorithm regarding the following artificial and real 

world datasets. 

 

4.1.1 Artificial data  

We generated six different types of artificial datasets (s1, s2, s3, s4, s5, s6) from 

multivariate normal distributions with different parameter configurations. For each 

type we generated five datasets. Table 8 in Appendix A describes the process that 

generated these data in detail. Datasets of type s1, s3 and s5 have three, six and nine 

non-overlapping spherical clusters of twenty objects with three features each. 

Datasets of type s2, s4 and s6 have three, six and nine partially overlapping 

spherical clusters of twenty objects with three features each respectively.  
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Figure 2(a) and 2(b) show the two and three dimensional plots of observations 

for one of the randomly generated datasets of type s1, and figure 2(c) and 2(d) show 

the two and three dimensional plots of observations in one of the randomly 

generated datasets of type s2 respectively. Notice the non-overlapping and partially 

overlapping structure of the clusters. 

 

 
Figure 2: Example of two artificial datasets with three non overlapping (type s1 (a)-(b)) and 
overlapping clusters (type s2 (c)-(d)) of twenty objects with three features each. 
 
 

4.1.2 Real world data 

In addition to the artificial data, we used four well-known real-world datasets 

from the Machine Learning Repository (Merz et al. 1997) for further investigation. 

They are: 

 

- Fisher’ s Iris dataset (n=150, p=4, g=3).  

The dataset consists of three different species of iris flower: Iris setosa, Iris 

virginica and Iris versicolour (see figure 3). For each species, fifty samples with 

four features each (sepal length, sepal width, petal length and petal width) were 

collected. 
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Figure 3: The iris dataset. Iris setosa (‘+’ ), Iris versicolor (’ o’ ), Iris virginica (‘ x’ ) 

 

- Wisconsin Breast Cancer dataset (n=683, p=9, g=2).  

This dataset consists of 683 objects characterized by nine features: clump 

thickness, cell size uniformity, cell shape uniformity, marginal adhesion, single 

epithelial cell size, bare nuclei, bland chromatin, normal nucleoli and mitoses. There 

are two categories in the data: malignant (444 objects) and benign (239 objects).   

 

- Ripley’s glass dataset (n=214, p=9, g=6).  

The data were sampled from six different type of glass: building windows float 

processed (70 objects), building windows non float processed  (76 objects), vehicle 

windows float processed  (17 objects), containers  (13 objects), tableware  (9 

objects), headlamps (29 objects) with nine features each: refractive index, Sodium, 

Magnesium, Aluminum, Silicon, Potassium, Calcium, Barium and Iron. 

 

- Vowel dataset (n=871, p=3, g=6).  

This dataset consists of 871 Indian Telugu vowel sounds. The dataset has three 

features corresponding to the first, second and third vowel frequencies and six 

overlapping classes { δ (72 objects), a (89 objects), i (172 objects), u (151 objects), e 

(207 objects), o (180 objects)} .  

Glass and Vowel datasets have clusters, which are strongly overlapping. 

Table 2 below summarizes the main characteristics of the artificial and real-

world dataset investigated. 
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Table 2: Characteristics of the datasets considered 

Name #Objects #Clusters #Features Objects per Cluster 

Artificial Data 

s1 60 3 3 20 

s2 60 3 3 20 

s3 120 6 3 20 

s4 120 6 3 20 

s5 180 9 3 20 

s6 180 9 3 20 

 

Real World Data 

Iris 150 3 4 50 

Cancer 683 2 9 444.239 

Glass 214 6 9 70,76,17,13,9,29 

Vowel 870 6 3 72,89,172,151,207,180 
 

 

4.2 Algorithmic settings   

For the GA, PSO, and DE, we conducted several pre-experiments to determine 

one parameter setting per algorithm that yields the best performance with respect to 

all datasets. 

The performance bottle-neck in all three search heuristics is the fitness 

evaluation of candidate solutions. Thus, for a fair performance comparison, all 

algorithms had the same number of fitness evaluations, which we set to 100.000. 

For the GA, PSO, and DE the number of fitness evaluations is the product of the 

population size times the number of iterations. For the random search algorithm 

(RS), we evaluated 100.000 randomly created points in the search space and 

recorded the best result.  

For the GA, PSO, and DE we used the following parameter settings shown in 

table 3 (the RS algorithm has no parameters):  

 

Table 3: Parameters of genetic algorithm, particles swarm optimization and Differential Evolution. 
The inertia weight of the PSO was linearly decreased from 1.0 to 0.7 during the 2000 iterations of 
the run. 

GA PSO DE 

Parameter Value Parameter Value Parameter Value 

Population size 100 Population size  50 Population size  50 

No. of iterations 1000 No. of iterations  2000 No. of iterations 2000 

Crossover rate 1.0 Inertia weight  1.0 → 0.7 Crossover rate  0.9 

Mutation rate 1.0 minϕ  0.0 Scaling factor f   0.3 

Mutation sigma  0.05 maxϕ  2.0   

Elite size 10 χ  1.0   
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In our preliminary experiments (not reported in this paper), we noticed that 

initialization with random candidate solutions for the medoids resulted in many 

infeasible solutions for the harder problems (often up to 90%), such as the glass 

data, which is a bad starting condition for population-based heuristics. Instead, we 

randomly selected data points of the datasets and used them as candidate solutions 

for the medoids during initialization in all final experiments, which yielded a much 

higher proportion of feasible candidate solutions and better overall results for the 

GA, PSO, and DE.  

 

4.3 Implementation 

We implemented our algorithms from scratch in C++ with Microsoft 

VisualStudio .NET except for using the MatLab C++ library for fast calculcation of 

matrix determinants. All experiments were run in Windows XP on a DELL latitude 

laptop PC and a DELL desktop PC both with Intel P4 2 GHz processors. 

 

5 Results 

5.1 Artificial data clustering 

Regarding the artificial datasets, we conducted experiments for the thirty datasets 

(five variations of six data types), which we repeated 10 times for the stochastic 

algorithms RS, GA, PSO, and DE. Table 4 reports the mean and standard error of 

the mean best fitness over ten runs for each of the five datasets per data type.  
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Table 4: Mean Values and Standard Errors in the analysis of artificial datasets.  
Column 1: data type (s1-s6), column 2: clustering criteria (MC = Marriott Criterion, TRW = Trace 
of the within matrix, VRC = Variance Ration Criterion), and columns 3-7: mean fitness with the 
standard error in brackets. The best fitness values are marked in bold. 

 

 

For the simple datasets of type s1 and s2, GA, PSO and DE always reached the 

same mean values with standard error zero. Even RS obtained the same fitness with 

standard error zero in all experiments except one (type s2- TRW criterion), whereas 

k-means achieved the same result as GA, PSO, and DE for dataset s2, but failed in 

many runs for s1. 

The more challenging datasets of type s3, s4, s5 and s6 revealed superior 

performance of GA, PSO and DE compared to RS and k-means by consistently 

obtaining better mean fitness values with lower standard errors. GA, PSO and DE 

converged consistently to the same candidate solutions with the same fitness and 

standard error zero for datasets of type s3 (except for PSO-VRC). DE maintains 

such robust convergence also for the datasets of type s4 (except for MC) and 

datasets of type 5.  

In conclusion, the harder the clustering problem, the more it pays-off to apply 

population-based heuristics. Moreover, comparing the population-based heuristics, 

DE clearly obtains the best results both in terms of accuracy (mean fitness) and 

robustness (variance of the repeated results). 

 

dataset criterion k-means RS GA PSO DE
MC 0.229 (0) 0.229 (0) 0.229 (0) 0.229 (0)

s1 TRW 218.50 (100.77) 167.99 (0) 167.99 (0) 167.99 (0) 167.99 (0)
VRC 332.13 (0) 332.13 (0) 332.13 (0) 332.13 (0)
MC 0.516 (0) 0.516 (0) 0.516 (0) 0.516 (0)

s2 TRW 404.23 (0) 404.26 (0.1733) 404.23 (0) 404.23 (0) 404.23 (0)
VRC 134.15 (0) 134.15 (0) 134.15 (0) 134.15 (0)

MC 0.8415 (0.1003) 0.2343 (0) 0.2343 (0) 0.2343 (0)

s3 TRW 670.76 (169.75) 665.49 (71.3147) 335.48 (0) 335.48 (0) 335.48 (0)

VRC 573.59 (91.4623) 1150.39 (0) 1150.27 (0.5745) 1150.39 (0)

MC 1.0956 (0.0684) 0.4615 (0.0026) 0.4650 (0.0146) 0.4593 (0.0005)

s4 TRW 983.21 (134.55) 1195.8 (77.2703) 804.53 (1.2116) 808.16 (13.8201) 803.76 (0)

VRC 303.6 (15.0845) 481.2 (0.691) 481.38 (0.644) 481.68 (0)

MC * 0.3569 (0.1166) 0.5503 (0.1719) 0.2183 (0)

s5 TRW 1123.96 (224.43) * 630.79 (85.5994) 798.64 (160.31) 533.72 (0)

VRC * 1998.71 (247.53) 1608 (319.5) 2323.16 (0)

MC 1.872 (0.3243) 0.7345 (0.0808) 0.6213 (0.1125) 0.4687 (0.0015)

s6 TRW 1515.90 (193.68) 2817.92 (558.52) 1373.56 (71.0108) 1310.54 (94.9363) 1192.2 (0.8476)

VRC 421.42 (73.2023) 898.63 (43.2029) 927.18 (74.279) 1041.59 (0.6551)
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5.2 Real-world data benchmarks 

Apart from the artificial datasets, we conducted experiments with all algorithms 

for the four machine learning data benchmarks and repeated each run 30 times. The 

results are shown in table 5.  

 

Table 5: Mean values of the optimal fitness values and standard Errors over thirty runs in the analysis 
of real world datasets. Columns 4-8 show the mean and standard errors (in brackets) of the best 
fitnesses over 30 runs. The best results are marked in bold. 

 

Our results clearly show that Fisher's iris dataset is not sufficiently challenging to 

compare the performance between advanced clustering algorithms despite its great 

popularity in the clustering community. Even the random search algorithm could 

identify the same optimal partition in every run for TRW and VRC, whereas k-means 

frequently converged to local optima. By exhaustive search, we have verified that 

the best partition found corresponds to the global optimum of the corresponding 

fitness function.  

Regarding the cancer data, k-means is as robust as GA and DE and converges to 

the same fitness value in every run, whereas for the TRW criterion, PSO has a mean 

value of 19324 and the approximated confidence interval at 95% level 

([19323.21,19324.79]) does not include the optimal value 19323.  For the VRC, GA, 

PSO and DE have equivalent results, whereas RS cannot compete. In contrast, for 

MC, PSO reaches the minimum mean with standard error close to zero. This is the 

only case in our experiments, where DE did not obtain the best mean value. 

However, the approximated confidence interval of the DE result at 95% level 

([0.3508,0.3584]) contains the PSO mean fitness result, and thus the DE and PSO 

results are yet not significantly different. In all other experiments, DE always 

Dataset Criterion k-means RS GA PSO DE
MC 0.1995 (0.0002) 0.1984 (0) 0.1984 (0) 0.1984 (0)

iris TRW 8950.18 (449.79) 7885.14 (0) 7885.14 (0) 7885.14 (0) 7885.14 (0)

VRC 561.63 (0) 561.63 (0) 561.63 (0) 561.63 (0)

MC 0.3733 (0.0019) 0.3565 (0.0027) 0.3527 (3.51e-005) 0.3546 (0.0019)

cancer TRW 19323 (0) 19361 (3.3296) 19323 (0) 19324 (0.3944) 19323 (0)

VRC 1022.28 (0.3555) 1026.26 (0) 1026.26 (0.0002) 1026.26 (0)

MC 0.06463 (0.0017) 0.02661 (0.0009) 0.03176 (0.0010) 0.01984 (0.0003)

glass TRW 366.98 (6.59) 393.21 (2.223) 341.09 (1.5999) 339.04 (0.9505) 336.06 (0)

VRC 101.05 (0.9564) 121.94 (0.7799) 122.74 (0.578) 124.62 (0)

MC 0.4563 (0.0051) 0.3199 (0.0015) 0.3032 (0.0024) 0.2906 (0.0008)

vowel TRW 31687462 (229932) 34898130 (183388) 30943106 (13606) 30734068 (6467.23) 30690785 (1816.64)
VRC 1278.7 (7.14) 1450.45 (0.9677) 1463.33 (0.3809) 1465.55 (0.1156)
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reaches the best mean fitness among all algorithms with a lower standard error than 

GA and PSO.  

The second set of experiments on real-world data confirms the superior 

performance of the population-based heuristics. Simple datasets, however, can be 

analysed equally well with almost any kind of clustering algorithm, even random 

search. Substantial performance differences occur for challenging clustering 

problems with a large number of objects and clusters as well as overlapping cluster 

shapes. Moreover, DE turns out to be more robust and effective than GA and PSO. 

Finally, we have computed the mean number of misclassified items, which is the 

average number of objects that were assigned to clusters other than according to the 

nominal classification. Table 6 reports the mean values and standard errors.  

DE has a standard error smaller than one in all cases except for the cancer data 

with MC criterion (S.E.=1.71) and for vowel data with MC criterion (S.E.=5.85). 

Table 5 shows that in the five cases where DE does not identify the same partition in 

all 30 runs, the uncertainty in allocating objects to different groups is very small and 

related to few objects.  

 

Table 6 Mean Values of the error with respect to the nominal classification and standard errors 
over thirty runs in the analysis of real world datasets. 

 

Moreover, table 6 shows that there was no case where the number of 

misclassified items was zero, which can be explained by the data shown in table 7. 

Columns 3 and 4 in table 7 show the fitness values for the three different criteria in 

correspondence of the nominal classification and the according best mean fitness by 

the clustering algorithms reported in table 6.   

In all cases, the best mean values of the clustering algorithms are better than the 

corresponding fitnesses of the nominal classification for TRW and MC 

(minimization) as well as for VRC (maximization). This result can be explained by 

outliers, anomalous data and errors in collecting data. For example, figure 4 shows a 

dataset criterion k-means RS GA PSO DE
MC 3.03 (0.16) 3 (0) 3 (0) 3 (0)

iris TRW 23.83 (3.31) 16 (0) 16 (0) 16 (0) 16 (0)

VRC 16 (0) 16 (0) 16 (0) 16 (0)

MC 79.17 (0.67) 80.43 (2.36) 81.27 (0.48) 81.13 (1.71)

cancer TRW 27 (0) 27.43 (0.31) 27 (0) 27 (0.05) 27 (0)

VRC 28 (0.37) 27 (0) 26.87 (0.06) 27 (0)

MC 106.9 (0.74) 101.87 (0.57) 104.33 (0.58) 107.43 (0.69)

glass TRW 104.60 (1.26) 106.53 (0.71) 98.6 (0.25) 98.2 (0.19) 98 (0)

VRC 105.2 (0.98) 98.83 (0.25) 98.43 (0.27) 98 (0)

MC 415.97 (7.07) 363.97 (11.18) 355.73 (9.44) 291.47 (5.85)

vowel TRW 417.47 (5.95) 420.77 (5.85) 454.4 (1.71) 449.13 (1.36) 451.4 (0.20)

VRC 420.8 (5.29) 448.97 (2.08) 447.57 (1.90) 450.37 (0.78)
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2 dimensional plot of the iris data (sepal length vs. petal width), where data have 

been grouped using different colors (red= ‘setosa’, green=‘versicolor’ , blue= 

‘virginica’) according to the nominal classification (‘+’) and to the optimal partition 

for MC (‘o’). The three arrows in the figure mark those data points, where objects 

have been allocated to different groups by the MC optimal partition and the nominal 

classification. These data points are situated on the boundary between the two 

groups and could be reasonably considered to belong to both species. Moreover, the 

choice of an inappropriate fitness criterion can prevent the detection of the natural 

structure behind the data, such as a criterion assuming spherical shapes of the 

clusters when clusters are non-spherical.  

 

Table 7: Comparison between the fitness value in correspondence of the nominal classification and 
the optimal mean values determined by the clustering algorithms. 
 

dataset criteria Nominal
Optimal 

Mean value

1465.55

336.061

0.020

124.616

7885.14

0.198

561.628

19323.2

0.353

1026.3

30690800

0.291

2.826

19.702

0.6267

912

589.18

911.2

65984000
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8929.70

0.211
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Figure 4: Iris Data: Nominal Classification vs. MC optimal Partition 
 
 

7 Discussion and Conclusions 

In this paper, we compared the performance of GAs, PSO and DE with k-means 

and RS for a medoid evolution approach to partitional clustering. Both, for artificial 

and real-world data, we found that all three population-based heuristics obtained 

very good results. The simple clustering problems of our datasets could be solved by 

any method, even RS which we used as a lower bound algorithm for comparison. 

However, for more complex datasets with many features, many clusters, and 

overlapping clusters, we found substantial performance differences between the 

investigated algorithms. Here, the three population-based heuristics were 

unquestionably superior compared to k-means and RS, which we expected for the 

GA according to earlier results reported in the literature.  

The most important conclusion of our experiments is that DE is clearly and 

consistently superior compared to GAs and PSO both in respect to precision as well 

as robustness of the results (i.e. very similar results of repeated runs). The latter is 

an important characteristic from an end-user perspective, since a clustering 

algorithm must not only be accurate, but also produce reliable and reproducible 

results. Previous studies on DE in other domains of numerical optimization came to 

similar conclusions regarding its performance, but yet the algorithm is surprisingly 

unknown and has not been appropriately advertised. Our study shows for the first 
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time the superior potential of DE in partitional clustering. Apart from superior 

performance, one should note that DE is very easy to implement (even simpler than 

PSO and GAs) and requires very little parameter tuning compared to substantial 

tuning for GAs and PSOs. Also in terms of run-time considering the same number 

of fitness evaluations, DE is faster than GA, in particular when the fitness 

evaluation is very short like in case of simple clustering problems.  

Despite the convincing performance of all three population-based heuristics, 

none of the clustering experiments was without misclassification with respect to the 

nominal classification, which was what we expected. Interestingly, we found that 

the final fitness obtained by our algorithms was much better than the fitness of the 

nominal classification, which shows that the misclassification could not be 

explained by the optimization performance. Instead, misclassification is the result of 

the underlying assumptions of the clustering fitness criteria (such as spherical shape 

of the clusters), outliers in the dataset, errors in collecting data and human errors in 

the nominal solutions. This is indeed not a negative result. In fact, the differences of 

a clustering solution based on statistical criteria compared to the nominal 

classification can reveal interesting data points and anomalies in the dataset. In this 

way, a clustering algorithm can be used as a very useful tool for data pre-analysis. 

Our study shows that DE rather than GAs should receive primary attention for 

numerical optimization in partitional cluster algorithms with great potential for data 

analysis tools. 
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Appendix A 

Table 8: Parameters configuration of the random generative processes of the artificial datasets. 

Column 1 reports the dataset types, column 2 the profile data matrix structure (e.g. the profile matrix X 

is made of three sub-matrices Xi (i=1,..,3) of size 20x3 with data generated from multivariate normal 

distribution with parameters as reported in column 4) , column 3 the size of the sub-matrices and the 

generative random process and column 4 the numerical parametric values for each random variable. 

Datasets are random realizations of the multivariate normal random variables X1,…X9, with parameters 

specified in column 4. 

 

DATASET DATA Matrix Distribution Moments
X1~N( � 1, � 1) (20x3) � 1=[1,1,1], � 1=I  

X2~N( � 2, � 2) (20x3) � 2=[5,5,5], � 2=I  

X3~N( � 3, � 3) (20x3) � 3=[9,9,9], � 3=I  

X1~N( � 1, � 1) (20x3) � 1=[1,1,1], � 1=2I  

X2~N( � 2, � 2) (20x3) � 2=[5,5,5], � 2=3I  

X3~N( � 3, � 3) (20x3) � 3=[9,9,9], � 3=2I  

X1~N( � 1, � 1) (20x3) � 1=[1,1,1], � 1=I  

X2~N( � 2, � 2) (20x3) � 2=[5,5,5], � 2=I  

X3~N( � 3, � 3) (20x3) � 3=[9,9,9], � 3=I  

X4~N( � 4, � 4) (20x3) � 4=[-3,-3,-3], � 4=I  

X5~N( � 5, � 5) (20x3) � 5=[-7,-7,-7], � 5=I  

X6~N( � 6, � 6) (20x3) � 6=[-11,-11,-11], � 6=I  

X1~N( � 1, � 1) (20x3) � 1=[1,1,1], � 1=2I  

X2~N( � 2, � 2) (20x3) � 2=[5,5,5], � 2=3I  

X3~N( � 3, � 3) (20x3) � 3=[9,9,9], � 3=2I  

X4~N( � 4, � 4) (20x3) � 4=[-3,-3,-3], � 4=3I  

X5~N( � 5, � 5) (20x3) � 5=[-7,-7,-7], � 5=2I  

X6~N( � 6, � 6) (20x3) � 6=[-11,-11,-11], � 6=3I  

X1~N( � 1, � 1) (20x3) � 1=[1,1,1], � 1=I  

X2~N( � 2, � 2) (20x3) � 2=[5,5,5], � 2=I  

X3~N( � 3, � 3) (20x3) � 3=[9,9,9], � 3=I  

X4~N( � 4, � 4) (20x3) � 4=[-3,-3,-3], � 4=I  

X5~N( � 5, � 5) (20x3) � 5=[-7,-7,-7], � 5=I  

X6~N( � 6, � 6) (20x3) � 6=[-11,-11,-11], � 6=I  

X7~N( � 7, � 7) (20x3) � 7=[-15,-15,-15], � 7=I  

X8~N( � 8, � 8) (20x3) � 8=[13,13,13], � 8=I  

X9~N( � 9, � 9) (20x3) � 9=[17,17,17], � 9=I  

X1~N( � 1, � 1) (20x3) � 1=[1,1,1], � 1=2I  

X2~N( � 2, � 2) (20x3) � 2=[5,5,5], � 2=3I  

X3~N( � 3, � 3) (20x3) � 3=[9,9,9], � 3=2I  

X4~N( � 4, � 4) (20x3) � 4=[-3,-3,-3], � 4=3I  

X5~N( � 5, � 5) (20x3) � 5=[-7,-7,-7], � 5=2I  

X6~N( � 6, � 6) (20x3) � 6=[-11,-11,-11], � 6=3I  

X7~N( � 7, � 7) (20x3) � 7=[-15,-15,-15], � 7=2I  

X8~N( � 8, � 8) (20x3) � 8=[13,13,13], � 8=3I  

X9~N( � 9, � 9) (20x3) � 9=[17,17,17], � 9=2I  
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