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Abstract 

 

The aim of this paper is to analyse the solution of a fuzzy system when the classical solution based 

on standard fuzzy mathematics fails to exist. In particular we analyse the solution of the system 

Ax=b with A squared matrix with positive fuzzy coefficients and y crisp vector of positive 

elements. This system is particularly important for financial applications. We propose two different 

solution methods that are based respectively on the work of Buckley et al. (2002) and Friedman, 

Ming and Kandel (1998). An application to an important financial problem, the derivation of the 

artificial probabilities in a lattice framework, is provided. 
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1. Introduction 

 

Various financial problems boil down to the solution of linear systems of equations. When the 

estimation of the system parameters is difficult, it is convenient to represent some of the system 

parameters with fuzzy numbers rather than crisp numbers.  

Let Ax=y be a fuzzy linear system, where A is a square matrix of fuzzy coefficients aij , i= 1, …, n, j 

= 1, …, n and y is a fuzzy vector. 
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The alpha-cut of a fuzzy number jia , is denoted by: ],[)( ,,, jijiji aaa =α , where, for brevity, the 

dependence of the bounds of the interval on α is omitted. If jia , is a real number, then the alpha-cut 

]1,0[,)( ,, ∈∀= αα jiji aa .

1 The author thanks James J. Buckley for helpful comments and suggestions. Usual disclaimer applies. 



In this paper we investigate the solution of a fuzzy system when the classical solution based on 

standard fuzzy mathematics fails to exist.  

Using the α-cut representation, we write the ith equation of the system as follows: 
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Using interval addition and multiplication (see Appendix 1) to evaluate the left hand side of 

equation (2) we get: 
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where ),,,min( ,,,,, jjijjijjijjijji xaxaxaxaxa = , ),,,max( ,,,,, jjijjijjijjijji xaxaxaxaxa = .

This implies that to solve one fuzzy equation (a system of n fuzzy equations) we have to solve a 

system of two (a system of 2n) non fuzzy equations. 

By making hypothesis on the sign of jj xx , , we solve for the jj xx , and hope they produce the 

alpha-cuts of a fuzzy number xj. As shown in [2] too often the system has no solution. 

A particular fuzzy linear system that has no solution using standard operations between fuzzy 

numbers is the system Ax=y where A is a square matrix of fuzzy coefficients aij , i= 1, …, n, j = 1, 

…, n and y is a vector of crisp terms. Recalling that y is a crisp vector: 
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as ai,j is a fuzzy number, system (3) has trivially no solution using regular operations between fuzzy 

numbers.  

Two are the alternative solutions proposed in the literature to overcome the difficulty of finding a 

solution using regular operations between fuzzy numbers: the Buckley et al. (2002) solution and the 

Friedman, Ming and Kandel (1998) solution. 
Buckley et al. (2002) handle the general problem of constructing a solution for the fuzzy matrix 

equation Ax=y when the elements in A and y are triangular fuzzy numbers (TFN). They propose a 



solution strategy that involves the use of three different methods that should be investigated 

sequentially. They start from the most precise method and, if it is too difficult to compute, they use 

the second best method. If the second method is also hard to implement, they resort to the third 

method, that is the easiest.  

Friedman, Ming and Kandel (1998) analyse a system Ax=y where A is the matrix with crisp 

coefficients and y is the vector of fuzzy coefficients. They introduce the concept of a weak fuzzy 

solution, that is used whenever the classical solution does not exist. 

In Friedman, Ming and Kandel (2000), the authors investigate the important issue of duality. As 

they recall, in general there is no inverse element for a fuzzy number u, i.e. an element such that 

u+v=0, therefore the fuzzy linear system (A-B) x = y can not be replaced by the fuzzy linear system 

Ax = Bx + y (the dual fuzzy linear system). In line with their observation we point out that any shift 

of one term from one side to the other of the equality may lead to a different fuzzy system, as it is 

illustrated in the following. 

Consider the following 2x2 fuzzy system: Ax = y,
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by writing the system in terms of α-cuts we get: 







=+

=+

],[],[],[

],[],[],[

222222212121

112121211111

yyxaaxaa

yyxaaxaa
(5) 

Suppose that A-1 exists for all ]1,0[),( ∈∀∈ ααaaij  and, for simplicity, that the unknowns in 

system 5 are all positive. Any shift of one term from one side of the equality to the other will lead to 

a different crisp system, e.g. system 5 leads to: 
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If we change system 5, by shifting one term to the right hand side, e.g.: 







=+

−=

],[],[],[

],[],[],[

222222212121

212121111111

yyxaaxaa

xaayyxaa
(6) 

the crisp system changes as follows: 
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Depending on how we write the system, for each parameter we may use the lower or the upper 

bound of the interval. Moreover, depending on the hypothesis that we make on the sign of each 

unknown, we should use different combinations of the bounds of the parameters and of the 

unknowns. As a consequence, we may find different solutions for the same fuzzy system, 

depending on how we write each equation of the system.  

The aim of this paper is twofold. First we propose two different methods, based respectively on the 

solution concepts of Buckley et al. (2002) and Friedman, Ming and Kandel (1998), that find a 

solution that does not change depending on how we write each equation of the system. Second, we 

provide an application of the methods proposed to an important financial problem: the derivation of 

the artificial probabilities in a lattice framework. 

The plan of the paper is the following: in section 2 we briefly illustrate the Buckley et al. (2002) 

solution for the fuzzy matrix equation Ax=y when the elements in A and y are TFN, highlighting the 

main advantages and disadvantages. In section 3 we propose the first method to find the largest 

solution interval, that is based on the solution concept of Buckley et al. (2002). In section 4 we 

illustrate the Friedman, Ming and Kandel (1998) solution and we explain the relation among their 

solution, the solution proposed in section 3 and the classical solution. In section 5 we propose the 

second method to find the largest solution interval that involves an extension of the Friedman, Ming 

and Kandel (1998) method to a matrix with fuzzy coefficients. In section 6 we present an 

application of the two different methods to the financial problem: the derivation of the artificial 

probabilities in a lattice framework. The last section concludes. 

 

2. Buckley et al. (2002) solution 

 

Buckley et al. (2002) handle the general problem of constructing a solution interval for the fuzzy 

matrix equation Ax=y when the elements of the matrix A, ai,j, and the elements of the vector y, yi ,

i=1,…,n j=1,…,n are TFN.  



Define ∏
=

=
n

ji
jiaa

1,
, )()( αα , ∏

=

=
n

ji
jiyy

1,
, )()( αα , ]1,0[∈∀α . Let

2

),...,( ,1,1
n

nn Raav ∈= be a vector in 

)0(a , that determines a crisp matrix and let n
n Ryyy ∈= ),...,( 1 be a crisp vector in y(0). Assume 

that A-1 exists )0(av∈∀ .

They propose three different solutions: the first XJ, investigates the joint solution and then the 

marginals for each unknown, the second and the third solutions, XE and XI investigate directly the 

marginals, and are based respectively on the extension principle and fuzzy arithmetic. 

The joint solution XJ is a fuzzy subset of Rn defined as follows: 

{ })(),(,)( , ααα iijiJ yyavyAxxX ∈∈== .

The marginals iJX are obtained by projecting XJ onto the coordinate axes: 

{ }wxRxxXwX j
n

JjJ =∈= ,)(max)( for j = 1, …, n.

The second and the third solutions, XE and XI investigate directly the marginals, that are founded by 

using Cramer’s rule to solve for each unknown: 

nj
A
A

x j
j ,...,1, == (7) 

where A is the crisp matrix determined by v, Aj has its j-th column replaced by y and fuzzify it by 

using or the extension principle, or interval arithmetic. 

The second solution, XE, is investigated by using the extension principle: 

{ }AAxyvX jjEj == ),(max π

If ],[)( EjEjEj xxX =α then 
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The third solution, ],[)( jIjIjI xxX =α , is obtained by fuzzifying ex-post the crisp solution in 

equation 7, using interval arithmetic.  

They show that: IEJC XXXX ≤≤≤ where XC is the classical solution. They propose to use XC if 

it exists, if the classical solution do not exist use XJ, if the joint solution is too difficult to investigate 

use XE , if also XE is difficult to evaluate, then use XI.



In all the cases in which it is difficult to investigate at least XE, they suggest to simply fuzzify ex-

post the crisp solution to the system. The main drawback of such a choice is that the solution 

bounds do not have any crisp system that supports them (as it is illustrated in the example in section 

6). Instead, it is desirable that any crisp value that belongs to the solution interval is obtained by 

using a crisp value )(, αjiij aa ∈ and )(αii yy ∈ at the same level of uncertainty. 

 

3. An alternative method to find the solution 

 

In the following we propose a practical algorithm that finds directly the marginals for each 

unknown and overcomes the drawback of XI. It has the advantage to be easily implementable and to 

take into account the important issue of duality.  

Consider the following 2x2 fuzzy system: Ax = y,
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by writing the system in terms of α-cuts we get: 







=+

=+

],[],[],[

],[],[],[

222222212121

112121211111

yyxaaxaa

yyxaaxaa

Recall that it is supposed that A-1 exists for all ]1,0[),( ∈∀∈ ααaaij .

We are looking for the solution vector x that, for each α satisfy Ax=y where 

)(),(,, αα iijiji yyaa ∈∈ . It follows that any crisp value )(),(,, αα iijiji yyaa ∈∈ ,determines a crisp 

solution that should belong with membership α to the fuzzy solution x.

Using Cramer’s rule to find the solutions of a crisp system Ax = y, we note that jx is an increasing 

or decreasing function of each Aa ji ∈, and of each yyi ∈ . It follows that in the fuzzy system where 

Aa ji ∈, and iy are fuzzy numbers, and )(, αjia and )(αiy are the alpha-cuts of the fuzzy number, 

the bounds of the solution interval for each unknown )(αjx should be investigated by using each 

bound of the )(, αjia and )(αiy .

Therefore we have to solve 26 systems (for each parameter we can choose to use the lower bound or 

the upper bound of the interval), e.g. one of the 26 systems is: 
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The final solution is investigated by taking the minimum and the maximum of the solutions found 

in each system for each unknown:  
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This procedure ensures that we are taking all the possible solutions consistent with the parameters 

of the system, but it does not guarantee that the solutions for x1 and x2 are fuzzy numbers. Thus, an 

ex-post check is needed in order to exclude the solutions that are not fuzzy numbers. If 

)]0(),0([)1( 111 xxx ∉ or )]0(),0([)1( 222 xxx ∉ , then we conclude that there is no solution to the 

system. 

A simplification of the previous method, is to find the solutions for 1=α and 0=α and impose ex 

post a triangular form on the solution, whenever )]0(),0([)1( 111 xxx ∈ and )]0(),0([)1( 222 xxx ∈ .

In order to find )1(1x , )1(2x , we just solve the crisp system, substituting α=1 in the fuzzy system. 

In order to find )]0(),0([)0( 111 xxx = , )]0(),0([)0( 222 xxx = , we apply the previous methodology, 

using instead of iijiji yyaa ,,, ,, that depend on α, their crisp values )0(),0(),0(),0( ,, iijiji yyaa .

If )]0(),0([)1( 111 xxx ∈ and )]0(),0([)1( 222 xxx ∈ , then we take as solution the two triangular fuzzy 

numbers ))0(),1(),0(( 111 xxxx = and  ))0(),1(),0(( 222 xxxx = , otherwise we conclude that there is no 

solution to the system. 

 

4.  Friedman, Ming and Kandel (1998) solution 

 
Friedman, Ming and Kandel (1998) analyse a system Ax=y where A is the matrix with crisp 

coefficients and y is the vector of fuzzy coefficients and in order to find a solution, they use the 

conventional rules of addition and multiplication of a real number and a fuzzy number, reported in 

Appendix 1. They rewrite the system Ax = y as Sx = y:
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where si,j are determined as follows: 

if 0, ≥jia jinjnijiji asas ,,,, , == ++ ,

if 0, <jia , jinjijijni asas ,,,, , −=−= ++ ,

where njni ...,,1...,,1 == . Any sij not determined by the abovementioned conditions is equal to 0. 

The structure of S is 
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S , they demonstrate that S is non-singular if and only if the matrices 

B-C and B+C are both non singular, and that if S-1 exists it has the form: 
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If ex-post xx ≥ , they define the fuzzy solution { }niuuu ii ...,,1,, == as: 

{ })1(,,min xxxu iii =

{ })1(,,max xxxu iii =

By the use of )1(x they eliminate the possibility that a fuzzy number possess an angle greater than 

90°, i.e. the possibility that the peak value is not contained in the support of the fuzzy number. In 

this way they artificially force a quantity that is not a fuzzy number to become a fuzzy number. 

The solution xi is a strong fuzzy solution if { })1(,,min xxxx iii = and { })1(,,max xxxx iii = ,

otherwise u is a weak fuzzy solution, i.e. a solution where ii xx ≥ .

The condition in order to have a strong fuzzy solution is: 0))((
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=
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Note that in the case of a weak fuzzy solution, system (8) is trivially not verified using standard 

rules of addition and multiplication.  

As it is shown in the following, the procedure to solve the system of Friedman, Ming and Kandel 

(1998) is a special case of the classical method that uses standard rules of fuzzy addition and 

multiplication, the only difference is in the solution vector: in the case of a strong fuzzy solution the 

Friedman, Ming and Kandel (1998) solution is equivalent to the one of the standard approach, while 

in the case of a weak fuzzy solution, it is different since using the standard methodology we would 

have found no solution to the system.  
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one that we obtain by applying the standard rules of fuzzy addition and multiplication. 

Proof. 
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by the rules of multiplication of a crisp number and a fuzzy number (see Appendix 1): 

if 0, ≥jia then: 

jjijjji xaxxa ,, ]),[min( =
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Using these rules we rewrite the system, obtaining the system S’x’=y’ 
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where B’ = B contains the positive ai,j, and C’ = -C contains the negative ai,j.

S’=[si,j] is in fact determined as follows: 

if 0, ≥jia jinjnijiji asas ,,,, , == ++ ,

if 0, <jia , jinjiijjni asas ,,, , == ++ ,

where njni ,...,1,...,1 == . Any sij not determined by the abovementioned conditions is equal to 0.  

The system S’x’=y’ is equivalent to the system: Sx = y, in fact: 
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Therefore in case of a strong fuzzy solution, the Friedman, Ming and Kandel (1998) solution 

coincides with the classical solution.  

The Friedman, Ming and Kandel (1998) method yield to a solution interval that is in general not 

contained in the solution interval proposed in section 3 (see e.g. Appendix 2).  

However if 0≥ija the solution interval of Friedman, Ming and Kandel (1998) is contained in the 

solution interval proposed in section 3.  

Proof.  

Let us consider for simplicity a crisp matrix [aij] i =j = 2 According to the method proposed in 

section 3  in order to solve the system, each equation can be written in two different ways: 

Equation 1) 
1212111 yxaxa =+  or  1212111 yxaxa =+  

Equation 2) 
2222121 yxaxa =+  or  2222121 yxaxa =+  

We thus have 4 different systems to be solved: 
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and the solution is: 
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The solution of Friedman, Ming and Kandel (1998) coincides with the solution interval given by 

systems (9) and (12) and it is thus contained in the solution interval proposed in section 3. 

 



5. An extension of the Friedman, Ming and Kandel (1998) method to a matrix with fuzzy 

coefficients 

 

In this section we extend the Friedman, Ming and Kandel (1998) methodology to a matrix with 

fuzzy coefficients. We restrict our attention to ][ , jiaA = matrix with fuzzy coefficients 

],[ ijijij aaa = , where 0, ≥jia and y fuzzy vector of coefficients, with 0≥iy .

In line with Friedman Ming and Kandel, we define the fuzzy number vector ],[ xxx = solution of 

the system if: 
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By applying the rules of fuzzy numbers, we get: 
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If  0, ≥jia , depending on the sign of jx and jx , ]),][,min([ ,, jjjiji xxaa is obtained by looking at 

one of cases 1), 2) or 3) of Appendix 1. 

In the following we present only the case in which we make the hypothesis of a positive xj, and the 

system is written as Ax=y, keeping in mind that the same procedure should be repeated for all the 

other cases. 

By using standard rules of addition and multiplication among fuzzy numbers, we rewrite the system 

as follows: 
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where: 
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Note that in this case the solution can be found by solving separately the sub-system for x and x

(as a consequence, this solution interval is thus included in the one proposed in section 3).  

If ex-post xx ≥ , we define the fuzzy solution { }niuuu ii ...,,1,, == as: 

{ }iii xxu ,min=

{ }iii xxu ,max=

We say that there is no solution if the peak value falls outside of the support of the fuzzy number.  

The solution is a strong fuzzy solution ( ii xx ≤ ) iff: 0)(
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In the particular case in which y is a crisp vector, the solution xi is a strong fuzzy solution iff: 
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Next we have to investigate all the other systems that arise from a shift to the right hand side or the 

left hand side of any term of each equation. The final solution for each unknown is investigated by 

taking the minimum and the maximum of the different solutions found in each system. If 

)]0(),0([)1( 111 xxx ∉ or )]0(),0([)1( 222 xxx ∉ , then we conclude that there is no solution to the 

system. We present the whole methodology in the financial example in section 6. 

 

6. The financial problem 

 

In this section we investigate the solution to a problem that arises in the derivation of the artificial 

probabilities in a lattice framework.  

Let us consider a one period model where { }1,0∈t is time, at time one we have two different states 

of the world, one where the market is bullish and one where the market is bearish and we have two 

financial instruments, the money market account and the stock. The money market account is worth 

1 at time zero and 1+r at time one, where r is the risk free interest rate. The stock price is worth S at 

time zero and at time 1 it is worth Su in state “market bullish” and Sd in state “market bearish”, 

where u and d are the two jump factors, that satisfy the following no arbitrage condition: 

 d < (1+r) < u.

We are looking for the so called artificial probabilities that ensures that the price of an instrument at 

time 0 is equal to the expected value, discounted at the risk free rate, of the payoff of the instrument 

at time 1. 

Writing this equality for each instrument we get: 
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The system can be simplified as follows: 
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where pu and pd are the unknown artificial probabilities of an up and a down move respectively; u

and d are the up and down jump factors of the stock and (1+r) is the end of the period value of one 

unit of money invested at the risk free rate. 

The crisp solution to the system is: 
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There is no fuzziness in the risk free rate, since it is given at time zero, while it is usually difficult to 

precisely estimate the up and down jump factors of the stock, as pointed out in [6]. Thus it is 

convenient to represent the two jump factors with fuzzy numbers, in particular we can use the two 

triangular fuzzy numbers u=(u1, u2, u3) and  d=(d1, d2, d3.), as in [6]. 

The fuzzified system is the following: 
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where )( 121 kkkk −+= α and )( 233 kkkk −−= α for k = d, u.

Let us investigate the three solutions proposed  by Buckley et al. (2002). 

In order to find XJ , we investigate:  
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for pu and pd in the first quadrant (see Figure 1). 

The solution is: 
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In order to find XE, we fuzzify the crisp solution using the extension principle: 
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In order to find XI, we fuzzify the crisp solution using fuzzy arithmetic: 
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Note that in this case we loose the property that a fuzzy system is an extension of a crisp system: 

e.g. by inspection of uIp , it contains both the terms d and d , as a consequence there can be no 

crisp system (except for α = 1) with crisp values for u and d that lead to a crisp value of uIp .

Moreover it is easy to check that XI contains XE, thus in this case IEJ XXX ≤= . As XJ exists, we 

take XJ as the Buckley et al. (2002) solution. 

 

Figure 1. Th

 

The solution proposed in section 3 is obtained
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The solution to system 14 is: 
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y solving the following systems: 
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The solution to system 15 is: 
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The solution to system 16 is: 
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The solution to system 17 is: 
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The final solution is investigated by taking the minimum and the maximum for each unknown over 

the set of possible solutions: 
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The solution proposed in section 5 is obtained as follows. 

Depending on how we write the left hand side and the right hand side of the system we have four 

different fuzzy systems and thus we can find four different solutions.  

Solution 1) As u and d are fuzzy numbers then the fuzzy system is: 
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by applying the rules of operations between fuzzy numbers, and keeping in mind that we are 

looking for probabilities, i.e. positive numbers2, we get: 
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or, written in matrix form: 
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which leads to the solution (which is the one proposed in Muzzioli and Torricelli, 2001): 
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we can observe that uu pp < , that is we have a weak fuzzy solution, as defined in [3]. Thus, we 

define the solution: uu pp =1 and uu pp =
1

and the final solution is: 
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Solution 2) The crisp system can be rewritten as: 
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applying the rules of fuzzy numbers we get: 

 
2 By the no arbitrage condition the possibility that a probability is equal to zero is ruled out. 
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which leads to the solution (which is the one proposed in [6]): 
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it can be shown that uu pp < and dd pp < , i.e. a weak fuzzy solution. Let us denote the interval of 

solutions: uu
pp =2 and uu pp =

2
, the interval of solution is: 
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It can be shown that 12
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pp > and 
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uu pp > , i.e. that this solution interval is contained in the solution 

interval of system 18. 

Solution 3) If we rewrite the crisp system as: 
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applying the rules of fuzzy numbers we get: 
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and the solution is: 
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Also in this case we have a weak fuzzy solution, since it can be shown that it may happen, 

depending on the values of u and d that or uu pp < and dd pp < , or uu pp > and dd pp > .

Moreover, it can be shown that also in this case the solution interval is contained in the solution 

interval of system 18. 

Solution 4) If we rewrite the crisp system as: 
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applying the rules of fuzzy numbers we get: 
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it may happen, depending on the values of u and d that uu pp < and dd pp > , or uu pp > and 

dd pp < . Moreover, it can be shown that also in this case, the interval for pu is contained in the 

solution interval of system 18. 

In sum, we take as solution the solution interval of system 18: 
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for two main reasons: first it is the widest and contains all the artificial probabilities consistent with 

the given up and down jump factors, second it is the only one that represents a fuzzy number vector, 

as it is formally shown, by analysing the behaviour of pu and pd, in [6].  

 

7. Conclusions 

 

In this paper we have analysed the solution of a fuzzy system when the classical solution based on 

standard fuzzy mathematics fails to exist. In particular we have considered the solution of the 

system Ax=b with A squared matrix with positive fuzzy coefficients and y crisp vector of positive 

elements. We have proposed two different solutions that are based on the work of Buckley et al. 

(2002) and Friedman, Ming and Kandel (1998), and we have applied them to the financial problem 

of finding the artificial probabilities in a lattice framework. The two solutions proposed fulfill two 

properties: they contain all the other possible solutions and they are represented by a fuzzy vector. 
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Appendix 1. 

 

Let ],,[],,[ jj
jj yyYxxX ==  the rules for interval addition and subtraction are [5]: 

],[ yxyxYX ++=+

],[ yxyxYX −−=−

The rules to evaluate the product between the two fuzzy numbers ai,j and xj are the following [5]: 

1) jjijjijjijjijji xaxaxaxaxa ,,,,, ,0,0 ==≥≥

2) jjijjijjijjijjji xaxaxaxaxxa ,,,,, ,0,0 ==<<≥

3) jjijjijjijjijji xaxaxaxaxa ,,,,, ,0,0 ==≤≥

4) jjijjijjijjijji xaxaxaxaxa ,,,,, ,0,0 ==≥≤

5) jjijjijjijjijjji xaxaxaxaxxa ,,,,, ,0,0 ==<<≤

6) jjijjijjijjijji xaxaxaxaxa ,,,,, ,0,0 ==≤≤

7) jjijjijjijjijjiji xaxaxaxaxaa ,,,,,, ,0,0 ==≥<<

8) ),max(),min(0,0 ,,,,,,,, jjijjijjijjijjijjijjjiji xaxaxaxaxaxaxxaa ==<<<<

9) jjijjijjijjijjiji xaxaxaxaxaa ,,,,,, ,0,0 ==≤<<

If  ,0, ≥jia then ),min( ,,, jjijjijji xaxaxa = and ),max( ,,, jjijjijji xaxaxa =

If ,0, ≤jia then ),min( ,,, jjijjijji xaxaxa = and ),max( ,,, jjijjijji xaxaxa =

If ,0 ,, jiji aa << then ),min( ,,, jjijjijji xaxaxa = and ),max( ,,, jjijjijji xaxaxa =

if ai,j is crisp then cases 7), 8) and 9) are impossible; 

cases 1) 2) and 3) reduce to: 



1’) jjijjijjijjiji xaxaxaxaa ,,,,, ,,0 ==≥ ;

cases 4) 5) and 6) reduce to: 

2’) jjijjijjijjiji xaxaxaxaa ,,,,, ,,0 ==< .

Appendix 2. Examples. 

 

1. Consider the system: 
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The solution proposed in section 3 is obtained by solving the following four systems and taking the 

minimum and the maximum for each alpha for each unknown: 





+−=+−
+−=−

rxx
rxx
11104

4332

21

21





−=
−=

α
α
8.32.3
7.33.3

2

1

x
x





−=+−
−=−

rxx
rxx
234

4532

21

21





+−=
+−=

α
α
26.2

4.1

2

1

x
x





−=+−
+−=−

rxx
rxx

234
4332

21

21





−=
+−=

α
α

2.16.0
2.06.0

2

1

x
x





+−=+−
−=−

rxx
rxx

11104
4532

21

21





−=
−=

,6.0
9.25.2

2

1

α
α

x
x

The final solution is:
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Note that in this case, in which only the vector y if fuzzy, the same solution is obtained by using the 

simple method proposed at the end of section 3, i.e. finding at α=0 and at  α=1 the solutions to the 

four systems, taking the min and the max for each unknown and  imposing ex-post the triangular 

shape. 

The Friedman, Ming and Kandel (1998) solution is: 
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Note that as x2 has the peak value that is outside the support of the fuzzy number, the final solution 

is a weak fuzzy solution: 
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)5.2,4.0,6.0(]9.25.2,2.06.0[

2

1

α
αα

x
x

2. Consider the system: 





−−+−=+
−+−=−

]24,410[52
]24,53[42

21

21

rrxx
rrxx

The solution proposed in section 3 is the following: 





−−−=−−+−=
−−=−+−=

)1111.0,8889.0,5556.1(]7778.01111.0,6667.05556.1[
)2222.0,7778.0,0556.3(]2222.0,2778.20556.3[

2

1

αα
αα

x
x

The Friedman, Ming and Kandel (1998) solution is the following: 





−−−=
−−=

]3333.1,8889.0,3333.0[
]3333.1,7778.0,1667.4[

2

1

x
x

Note that in this case it is not contained in the solution interval proposed in section 3. 

 

Appendix 3. Examples of the financial problem.  

 

1. Consider the system: 





=−−−++−−−+
=+

]1.1,1.1[)]25.12(2),18.125.1(18.1[)]8.085.0(85.0),5.08.0(5.0[
]1,1[]1,1[]1,1[

21

21

xx
xx

αααα

where )85.0,8.0,5.0(=d , )2,25.1,18.1(=u and r=0.1.

The final solution is: 























−−−−−

−−−
−+−−+

−−+
=









−+−−+

−+−
−−−−−

−−−
=

))8.085.0(85.0())25.12(2(
1.1))25.12(2(,

))5.08.0(5.0(())18.125.1(18.1(
1.1))18.125.1(18.1(

))5.08.0(5.0(())18.125.1(18.1(
))5.08.0(5.0(1.1,

))8.085.0(85.0())25.12(2(
))8.085.0(85.0(1.1

αα
α

αα
α

αα
α

αα
α

d

u

p

p

The four solutions to the system are graphed in Figure 1.  Note that solution 1 is the widest. 

 

2. Consider the system: 





=−−−++−−−+
=+

]05.1,05.1[)]55.160.1(60.1),20.155.1(2.1[)]8.085.0(85.0),7.08.0(7.0[
]1,1[]1,1[]1,1[

21

21

xx
xx

αααα

The four solutions to the system are graphed in Figure 2. Note that solution 1 is the widest and it is 

the only one that represents a fuzzy vector.  

 

Figure 2. The graph of the four solutions to example 1. 

 



Figure 3. The graph of the four solutions to example 2. 
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