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Abstract

Standard methodologies for the derivation of implied trees from option prices are based on
the validity of the put-call parity. Muzzioli and Torricelli (2002) propose a methodology which
accounts for PCP violations. Based on this latter approach the present paper advances in two main
directions. First we propose a different methodology in order to imply the interval of artificial
probabilities at each node of the tree. Secondly, we perform an empirical validation of the implied
tree obtained, both in the sample and out of sample, by using DAX index options data set covering
the period from January 4, 1999 to December 28, 2000. Numerical results are compared with one of
the most used standard methodologies, i.e. Derman and Kani’s. The results suggest that the
estimation proposed, by taking into account the informational content of both call and put prices,

highly improves both the in-the-sample fitting and the out-of-sample performance.
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1. INTRODUCTION

In the literature, various methods for deriving implied trees consistent with the so-called
smile effect and the term structure of volatility have been proposed (see among others Derman and
Kani (1994), Rubinstein (1994), Barle and Cakici (1995)). However, these methods disregard the
issue of a different volatility implied by call and put prices (written on the same underlying and
with the same strike price and time to maturity). Empirical evidence is presented, among others, by
Chesney, Gibson and Loubergé (1995) and Cavallo and Mammola (2000), about the fact that the

volatility implied by call prices is generally lower than the one implied by put prices. When there is

" Some early results of this paper first appeared in “Option implied trees under put call parity violations”, by V.
Moriggia, S. Muzzioli and C. Torricelli, Working Paper n.3 (2003), DMSIA, University of Bergamo. Partially
supported by MIUR 60% 2003 grant (scientific coordinator: V. Moriggia) and by CNR/MIUR CU03.0010S PF/25.



a substantial difference between the volatility implied by call and put prices, substantial pricing
errors may derive from taking into account only one set of options.

Muzzioli and Torricelli (2002) address the issue and obtain the following results. They
propose a methodology for the derivation of implied trees that takes into account the information
stemming from both call option and put option prices. The method basically extends Derman and
Kani’s (1994), whereby call (put) prices are also used in the lower (upper) part of the tree thus
exploiting the information content of both call and put prices. The tree, called the PC-implied tree,
is characterised by interval values for the underlying stock prices and probabilities. In Muzzioli and
Torricelli (2002) the authors do not provide any implementation with market data of the
methodology proposed and, as a consequence, they do not address the issue of selecting a crisp
implied tree among all the possible implied trees.

In Muzzioli and Torricelli (2003), the authors tackle the implementation issue, by providing
an example on two dates that shows how the resulting tree captures the different smiles of call and
put options. They address two main problems that arise from the implementation issue. First they
suggest a way to check for no arbitrage when aggregating the call and put implied trees. Secondly,
they provide a methodology in order to select, among all the possible implied trees, a single tree
characterised by crisp values for stock prices and probabilities.

The aim of our paper is twofold. First, by dropping assumption A3) of Muzzioli and
Torricelli (2002), we propose a different methodology in order to imply the interval of artificial
probabilities at each node. This methodology results in a different estimation (w.r.t. Muzzioli and
Torricelli (2003)) of the implied tree by means of market data. Secondly, we perform an empirical
validation of the implied tree obtained, both in the sample and out of sample, by using the DAX
index options data set covering the period from January 4, 1999 to December 28, 2000. Numerical
results are compared with Derman and Kani’s.

The plan of the paper in the next sections is the following. In Section 2 we briefly recall the
Muzzioli and Torricelli (MT) method for the derivation of the put-call (PC) implied tree and we
highlight the different methodology proposed in the present article in order to extract the artificial
probability interval at each node. In Section 3 we explain the estimation procedure used to select
crisp values for the stock prices and the probabilities. In section 4 we present the data set and the
methodology used in the implementation. In Sections 5 and 6 we illustrate the in-the-sample and
out-of-sample performance respectively, compared to Derman and Kani’s (DK). The last section

concludes. In the Appendix we show the derivation of the risk neutral probability interval.



2. THE METHODOLOGY FOR THE DERIVATION OF THE PC-IMPLIED TREE

In this section we illustrate, by means of an example, the Muzzioli and Torricelli (2002) method
for the derivation of the stock price intervals of the put-call (PC) implied tree, and we highlight the
different methodology we propose in order to extract the artificial probability interval at each node.
Specifically, the main difference stems from the fact that, while keeping assumptions Al) and A2)
of the Muzzioli and Torricelli (2002) method, we drop assumption A3).

Derman and Kani’s (1994) method implicitly assumes the validity of the Put-Call-Parity (PCP).
In order to apply the same type of methodology to markets characterised by PCP violations and to
exploit the whole market information, the MT method basically extends Derman and Kani’s by
using call prices also in the lower part of the tree and put prices also in the upper part, thus
exploiting all the information content of call and put prices. In the following we provide an example
that illustrates how the tree is implied (for details, see the original paper).

Essentially, the MT method proposes: a) to construct two implied trees, one using only the
information provided by call options and the other using only information provided by put options;
b) to aggregate the two trees by taking the implied stock prices as bounds for a price interval.

The initial inputs are: the term structure of risk-free interest rates, the stock price at time zero and
the interpolated smile function for call and put prices belonging to a class characterised by a
specific date and a specific maturity. In this example we construct a PC-implied tree with n=6
levels, on 6" January 2000, for options with maturity February. The Dax-index value is 6949.47,
the interpolated risk-free rate is 3.19%, the smile function for call options is ¢ = 0.38132547 —
0.00001995X and the smile function for put options is cp = 0.44034707 — 0.00001964X, where X is
the strike price and o is the volatility.

The same methodology as Derman and Kani’s for the derivation of the implied tree is used, the
only difference being the use of call options also in the lower part of the tree for the derivation of
the call implied tree and the use of put options also in the upper part of the tree for the derivation of
the put implied tree. At each node, the no-arbitrage check, the Barle and Cakici (1995) condition is
used to exclude arbitrage. The two trees obtained are reported in Figures 2 and 3 respectively.

The MT method suggests the aggregation of the two trees into a single tree characterised by
interval values for stock prices, whose bounds are, at each node of the tree, the minimum and the
maximum of the stock prices implied by the call and the put options. In this way all the information

stemming from call and put prices is summed up in a single tree.
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Figure 1. The tree implied by using only call prices.
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Figure 2. The tree implied by using only put prices.
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Figure 3. The P-C implied tree for the stock prices.
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When aggregating the two trees, it is necessary to check, at each step, that the newly determined
stock prices and probabilities are consistent with the no arbitrage condition, so that the PC-implied
tree is arbitrage free. Note that, as the volatility implied by put prices is bigger than the one implied
by call prices, the put implied prices are the most external. The resulting tree is reported in Figure 3

and a generalisation of two levels of the same is illustrated in Figure 4.
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Figure 4. Four nodes of the Pc-implied tree.

Muzzioli and Torricelli (2002), by means of assumption A3), suggest the implication of the interval
of artificial probabilities at each node, by taking the minimum and the maximum of the artificial
probabilities implied by the call or the put options respectively. In this paper we drop assumption
A3) and we derive the artificial probabilities endogenously by using the standard risk neutral
valuation formula:

S@, j)e™ —S(@, j+1)
SE+1,j+1)-S3GE,j+1)

pi+lLj+1)=

We are thus in a position to find the largest interval of risk neutral probabilities consistent with

the given stock price intervals. Specifically, the set of all the artificial probabilities

[P+ +1),;(i+1,j+l)] consistent ~with the stock prices [S(i,/ +1),TS'(i,j +1)],
[§(i+l,j+1),§(i+1,j +1)] and [§(i,j),§(i,j)] , 1s given by the following interval:

S(i, j)e™ =S(i,j+1)  S@,j)e™ —S(@i, j+1)
SG+1,j+1)-SG, j+1) SG+1, j+1)=S@, j+1) |

[pi+1,j+1), p(i+1,j+1)]= (1)

In the Appendix we show the derivation and the properties of this risk neutral probability interval.
Note that the interval of artificial probabilities proposed in Muzzioli and Torricelli (2002) is

contained in this interval.




3. THE ESTIMATION PROCEDURE

In this section we propose a different estimation procedure of the implied tree, consistently with
the different methodology used to imply the artificial probability intervals. As stressed in the

previous section, the latter differs from Muzzioli and Torricelli (2003) and so does the estimation

procedure.
In Muzzioli and Torricelli (2003), the authors propose to identify parameters for both stock

prices and probabilities as follows:
Pais )= apli, )+ (=) pi, )
Sa (i, ) =aS(i, )+ (1-a)S (i, )
where o €[0,1].

and estimate the parameter o, by solving the following non linear optimisation problem:
min Y (f7 (@)~ fy)?
@ =

s.t. a€[0,1] and $(0,0)=>4,(j,m)*S,(j,n)

j=1
where fr(a) is the theoretical price of the option, fis is its market price, m is the number of
options and the constraint on the stock price is necessary in order to have a risk neutral tree.
In this application we only identify a parameter for the stock prices and we derive the
corresponding artificial probabilities (by means of the risk neutral argument).
Two methods are used and compared: Method 1, based on a single parameter, and Method 2,
based on two parameters.

Method 1) S.(i, j)=aS@, j)+(1-a)S(i,j) , i=l..j+1 j=0,..n;. )

Method 2) S, (i, /) = {aﬁ(i’j )-8 ) i>J =0, 3)
LS )+(A-£)S3, j) otherwise

where a, f €[0,1].

Method 2 better captures the smile effect, since it separates the nodes in the upper part, usually
characterised by lower volatility, from the nodes in the lower part of the tree, usually characterised
by higher volatility.

At each node (i, j) of the tree, the corresponding risk neutral probabilities are derived as follows:

S (i,j—1e™ =8, (i, ) 4)
Sv(i+1’j)_Sv(iaj) .

p. G, ))=



The Arrow-Debreu prices A, (i, j) are computed by forward induction as the sum over all paths

leading to node (i, ) of the product of the parameterised risk neutral probabilities of an up move,

p,(i,j), discounted at the risk-free rate at each node in each path.

The theoretical call and put prices are:

C, =" 4,(jun)-max(S,(j.n)~ K. 0)

Jj=l
P, =Y A,(j,n)-max(K —S,(j,n), 0)
Jj=1

We estimate the parameter vector v, by solving the following non linear optimisation problem:
mvinZ(fT(V)_fM)2 (5)
i=1

where f7(v) is the theoretical price of a call (C,) and a put option (P,), fis is its market price, m is

the number of options in the class.

4. NUMERICAL EXPERIMENTS

In this section we describe the data set used, and illustrate the implementation of our

methodology.

4.1 THE DATA SET
To evaluate the accuracy of the PC-implied tree, with respect to the DK method, in fitting the
observed option market prices of options, we provide an application to DAX-index options.

We use the DAX-index options market for two main reasons: first, it is a relatively new
European market where short-selling restrictions may induce put-call parity deviations (see e.g.
Mittnik S. and Rieken S., 2000); secondly, the nature of the option (European) and of the
underlying (dividends reinvested in the index) simplifies the estimation because neither the
estimation of the early exercise premium nor the estimation of the dividend payments is required.

DAX-options started trading on the German Options and Futures Exchange (EUREX) in August
1991. They are European options on the DAX-index, which is a capital weighted performance index
composed of 30 major German stocks and is adjusted for dividends, stocks splits and changes in
capital. Since dividends are assumed to be reinvested into shares, they do not affect the index value.
This latter feature, together with the option type (European), avoids the estimation problems of both

dividend payments and early exercise premium.



DAX-index options are quoted in index points, carried out one decimal place. The contract value
is EUR 5 per DAX index point. The tick size is 0.1 of a point representing a value of EUR 0.50.
They are cash settled, payable on the first exchange trading day immediately following the last
trading day. The last trading day is the third Friday of the expiry month, if that is an exchange
trading day, otherwise the exchange trading day immediately prior to that Friday. The final
settlement price is the value of the DAX determined on the basis of the collective prices of the
shares contained on the DAX index as reflected in the intra-day trading auction on the electronic
system of the Frankfurt Stock Exchange. Expiry months are the three near calendar months within
the cycle March, June, September and December as well as the two following months of the cycle
June and December.

The data set consists of settlements of DAX-index options, with maturities up to one year,
recorded from January 4, 1999 to December 28, 2000. The data set on DAX-index options is kindly
provided by Deutsche Borse AG. For the underlying, we used the settlements of the DAX-index in
the same time period. As a proxy for the risk-free rate we use the Fibor rates with maturities up to
one year: the appropriate yield to maturity is computed by linear interpolation. The data set on

DAX-index and risk-free rates is available in Data-Stream.

4.2 THE METHODOLOGY

Options with same expiry month and year are grouped in 2882 classes. In each class the average
number of options is 76 and the number of call options is always equal to the number of put
options.

The volatility smile is estimated separately for call and put prices in each class, by using market
prices to compute the volatility implied by the Black and Scholes formula. The obtained implied
volatilities are then interpolated with respect to the strike price by means of a linear' function of the
following form:

oX)y=aot+ta X

To compute the implied volatilities we use the bisection method in C++. The volatility smile is
obtained solving a least square problem implemented in GAMS ver. 20.7, using the solver
MINOS 5.4.

As for the Derman and Kani method, the inputs are: the underlying spot price, the risk-free
interest rate and the smile. Recall that in this application we assume that the smile is the same at

each date until maturity. The DK method is characterised by taking the smile implied by call

' The linear function has been chosen after a comparison with other usual polynomial interpolations for two main
reasons: first, the shape of the implied volatilities of DAX-index options is much closer to a linear shape; secondly, it
avoids over-parameterisation.



options for strikes greater or equal to the value of the underlying and that implied by put options for
strikes smaller than the value of the underlying. The DK tree is then derived following the
procedure detailed in Derman and Kani (1994), with the only exception of the Barle and Cakici
condition which is used to check for no arbitrage violations instead of the one proposed in Derman
and Kani (1994).

As for the Muzzioli and Torricelli method, the inputs are: the underlying value, the risk-free
interest rate and the two smile functions implied by call and put options. We derive two trees, one
using the smile implied by call options and the other using the smile implied by put options. Each
tree is derived following the Derman and Kani methodology recalled above. Then we aggregate
them in order to have a single implied tree with interval values for the stock prices. At each newly
determined node we check the no arbitrage condition by means of the procedure explained in
Muzzioli and Torricelli (2003). At each node, we parameterise the stock prices by means of
equation (2) for Method 1 and equation (3) for Method 2 and we derive the interval of the artificial
probabilities by means of equation (4). Finally, we run the non linear optimisation routine (5) in
order to get crisp values for the stock prices and probabilities. The routine is implemented in GAMS
ver. 20.7 and solved by MINOS 5.4. through a reduced-gradient algorithm (cf. Wolfe, 1962)
combined with a quasi-Newton algorithm that is described in Murtagh and Saunders (1978).

As the choice of the number (odd or even) of the binomial tree levels implies different estimates
of the price, both the PC-tree and the DK tree prices are computed as the average between odd and

even levels. We assume a binomial tree with 25 and 26 levels.

5. IN-THE-SAMPLE PERFORMANCE

The aim of this section is to evaluate and compare the quality of the three methods (Method 1,
Method 2 and DK) in fitting options market prices. To this end, three indicators are selected and
computed on each day for each option class and then averaged across the sample: the sum of
squared errors (SSE), the sum of squared relative pricing errors (SSRPE) and the index of

mispricing (MISP); they are respectively defined as follows:

SSE= L3 (PT - P¥)?
m i




T M

M

MISP=— o pi
2
P"and P are respectively the theoretical and the market price of option i, i =1, ..., m and m is

the number of options in the class.

The SSE is an indicator of the implied tree fit to option prices, it naturally increases with the
moneyness of the option. By minimising the SSE, more importance is therefore placed on in- the-
money options. In contrast, the SSRPE, being a percentage error, does not suffer from such a
drawback. However, for out-of-the-money options (i.e. very low prices), the SSRPE is typically
higher than it is for other option classes. The mispricing index ranges from —1 to 1 and indicates, on
average, the overpricing (positive MISP) or underpricing (negative MISP) induced by the method.
Table 1 reports the results for Method 1, Method 2, and Derman and Kani’s (DK).

SSE SSRPE MISP | SSE SSRPE | MISP

SSE | SSRPE | MISP Call Call Call Put Put Put

DK | 1947.77 | 16675 | 061 | 1618.53 252.45 046 | 2277.00 | 81.06 -0.64
Method 1| 248.13 | 11.51 | -0.12 250.70 19.73 0.16 | 245.55 3.29 -0.35
Method 2| 230.67 | 9.11 -0.32 197.40 15.12 0.01 | 263.94 3.09 -0.47

Table 1. The results for the whole sample.

DK’s SSE is much higher (about nine times) than the one obtained by means of Methods 1 and 2,
which suggests that both Methods 1 and 2 obtain a better fit to market prices. The SSRPE is highly
in favour of both Methods 1 and 2, particularly for put prices. The MISP indicates that the Derman
and Kani method substantially underprices both option classes, while in Methods 1 and 2 the
underpricing is lower, especially for call options. Method 1 underprices both classes of options less
than Method 2. Overall, Method 2 performs slightly better than Method 1, due to the better pricing
of call options, even if it underprices both classes of options more than Method 1.

In order to analyse the different performance of Methods 1 and 2, we report the average

parameter estimates in Table 2 (standard errors are in parenthesis).

Method 1 Method 2
alpha 0.65 (0.42) 0.88 (0.25)
beta 0.23 (0.33)

Table 2. The average parameter estimates in Methods 1 and 2.
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The overall better fit of Method 2 can thus be explained with the difference in the two parameter
estimates and the associated lower standard errors. The two parameter estimates in Method 2
indicate that nodes in the upper part of the tree have a different volatility content than nodes in the
lower part, a feature which is only partially captured by Method 1, where the single parameter alpha
is roughly a weighted average of the two parameters in Method 2.

Moreover, in Method 2, alpha is bigger than beta, indicating on average a preference for the lower
bound of the stock price intervals in the upper part of the tree and a preference for the upper bound
of the interval in the lower part of the tree. It follows that on average the volatility implied by
Method 2 is less than the one implied by Method 1; as a result, the underpricing of each option class
is bigger in Method 2 than in Method 1.

In order to detect which option class is better priced by each method, we divide options
according to their time to maturity and their moneyness. In Table 3 options are divided into four
classes depending on their time to maturity.

All three methods obtain a better pricing performance for short term options. However, Methods 1
and 2 are much better than Derman and Kani’s in relation to the SSE, especially for long term
options. Note that the SSE naturally increases from short term to long term options. The SSRPE
displays an opposite pattern (it is usually higher for less expensive options) and is better in Methods
1 and 2 except for the two intermediate time to maturity classes. Underpricing is severe with the
Derman and Kani method, particularly for puts. Method 2 is slightly better than Method 1 for calls,
while the opposite is true for puts.

Overall, Method 2 obtains a better performance than Method 1 in terms of SSE, while it underprices

more (overprices less) than Method 1.
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DK

S| SSRPE | MIS | o | “ean | can | put | puc | Pt

0-2 month [912.3868 | 505.2384 (-0.5452| 844.3079 | 766.5735|-0.5680 | 980.4657 | 243.9033 | -0.5438

2-4 month [1430.3877] 1.6028 |-0.5917|1253.4572| 0.0613 [-0.4489|1607.3183| 3.1444 | -0.6134

4-8 month (2500.6870[ 0.1040 (-0.6943]2066.7509( 0.0359 |-0.4331(2934.6232| 0.1722 | -0.7500

8-12 month |3435.8224| 0.0548 |-0.6249(2672.3172| 0.0093 |[-0.3365]4199.3275| 0.1003 | -0.6990
Method 1

S| SSRPE | MIS | | “ean | can | put | puc | Pt

0-2 month | 229.7189 | 24.8059 [ 0.0758 | 248.6046 | 39.7172 [ 0.0044 [ 210.8332 | 9.8946 [ -0.0795

2-4 month |216.8319| 14.7690 |-0.1321]|221.8131| 29.4537 | 0.1075|211.8507 | 0.0843 | -0.3474

4-8 month | 273.0739( 0.4573 ([-0.2918284.0246( 0.8802 [ 0.1956 262.1233| 0.0343 [ -0.5435

8-12 month | 280.5897| 0.0103 |-0.2101|247.2621| 0.0091 |0.3912|313.9173| 0.0114 | -0.5664
Method 2

S| SSRPE | MIS | e | “ean | can | put | puc | Pt

0-2 month | 189.4195( 19.0855 [-0.1173|174.8312 | 28.8777 [-0.1264(204.0077 | 9.2934 [ -0.2423

2-4 month |215.6399| 12.4311 |-0.3613| 172.1900| 24.7829 |-0.0870|259.0898 | 0.0792 | -0.4311

4-8 month | 256.3992( 0.4201 (-0.4466|234.2797( 0.8039 | 0.0604 |278.5188| 0.0363 | -0.6370

8-12 month | 280.4152| 0.0107 |-0.4356|217.3034| 0.0092 | 0.1880|343.5269| 0.0123 | -0.6578

Table 3. The three methods and time to maturity.

Table 4 shows how the average parameter estimates vary in Methods 1 and 2, depending on time to

maturity. The parameter estimates appear quite stable across classes.

Method 1 Method2 Method2
Alpha alpha beta
0-2 month 0.76 0.87 0.14
(0.41) (0.27) (0.29)
2-4 month 0.59 0.85 0.18
(0.44) (0.28) (0.30)
4-8 month 0.66 0.88 0.32
(0.40) (0.24) (0.35)
8-12 month 0.53 0.89 0.30
(0.39) (0.18) (0.35)

Table 4. The parameter estimates for Method 1 and Method 2.

In Method 2, alpha is always bigger than beta, indicating that the volatility implied by Method 2 is
less than the one implied by Method 1. It follows that the underpricing (overpricing) of each option
class is bigger in Method 2 than in Method 1.

In Table 5 we report the performance of the Derman and Kani method, Method 1 and Method 2 in

relation to the moneyness of the options. According to the indicator of moneyness M = S/(Ke "),
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where S is the underlying value and K the strike price of the option, we divide call and put option
prices into the following five classes: DOM (deep-out-of-the-money, call options: M < 0.9 and put
options: M > 1.1), OM (out-of-the-money, call options: 0.9 < M < 0.98 and put options: 1.02 <M <
1.1), AM (at-the-money, call and put options: 0.98 < M < 1.02), IM (in-the-money, call options:
1.02 <M < 1.1 and put options 0.9 < M < 0.98), DIM (deep-in-the-money, call options: M > 1.1 and
put options: M <0.9).

The SSE indicates that Methods 1 and 2 perform better than Derman and Kani’s in each class of
moneyness, particularly for in-the-money calls and out-of-the-money puts. It follows that the worst
fit of the DK method is observed in the lower part of the tree, i.e. the one derived by using out-of-
the-money puts. The SSRPE of Methods 1 and 2 is always lower than Derman and Kani’s, except
for IM and DIM puts (but the difference is very low). The MISP indicates that the Derman and Kani
method underprices most classes of options: the highest underpricing is observed for DIM and
DOM call and put options.

As expected, Method 2 underprices every option class more than Method 1. Method 2 obtains a
better pricing performance for IM AM and OM options, the opposite holds for DIM and DOM
options. Method 2 is better than Method 1 in the pricing of Call options, while the opposite holds
for Put options. As the volatility implied by call options is usually lower than the one implied by put
options, Call options were expected to be priced better by the lower volatility tree (Method 2).

13



DK

SSE SSRPE | MISP SSE SSRPE | MISP

SSE SSRPE MIS Call Call Call Put Put Put
DOM |1922.343]182.0114 | -0.70966 | 177.1344 |349.6053 | -0.60033 | 3667.551 | 14.41749 | -0.82091
OM |2274.105|24.21194| -1.25414 | 528.8513 | 48.1287 | -0.02289 [4019.359(0.295178 | -0.37643
AM 1812.499 | 626.631 [ -0.10748 | 1440.463|1184.041| -0.01663 [2184.536 | 69.22069 | -0.36978
M 2038.402{0.007021 | -0.27001 | 3081.275(0.010231 | -0.19746 [ 995.5284 | 0.00381 | -0.39543
DIM |1785.096]0.001493| -0.38826 [2945.494|0.002536 | -0.35411 | 624.6985|0.000449 | -0.46122

Method 1

SSE SSRPE | MISP SSE SSRPE | MISP

SSE SSRPE MIS Call Call Call Put Put Put
DOM |179.9587|24.38209 | -0.27457 [ 154.5186 [47.66418 | -0.18519 [205.3988 | 1.099998 | -0.51937
oM 321.09 |5.387053]0.375748|365.05249.058691 | 0.424837 (277.1277 [ 1.715415 [ 0.074633
AM  |275.9532]22.42565| 0.48038 [309.0861 |24.05294]0.662258|242.8203 [20.79836 | 0.270609
M 238.7734| 0.00127 |0.365786251.0423 [0.001351 [ 0.662797|226.5046|0.001189 | 0.024515
DIM |260.8418|0.000204 | -0.10528 [224.1132]0.0001840.196358|297.5705 | 0.000225 | -0.36111

Method 2

SSE SSRPE | MISP SSE SSRPE | MISP

SSE SSRPE MIS Call Call Call Put Put Put
DOM |187.8214|17.10353 | -0.35151 [ 146.9532(33.39706 | -0.24941 [ 228.6895 | 0.810008 | -0.60818
OM |281.6242|3.987007|0.513863|271.4583|6.681073|0.282644 (291.7902 | 1.292941 | -0.14206
AM  |228.3327]21.92721(0.199579| 193.673 |23.51629|0.448042|262.9924 |20.33814 | -0.05861
M 193.5049 | 0.000924 [ 0.049939|169.15230.000822 | 0.305628 | 217.8575[0.001026 | -0.16525
DIM |265.52560.000199| -0.24582 [218.924410.000168 | -0.0448 |312.1268 | 0.00023 | -0.39966

Table 5. The three methods and moneyness.

6. OUT-OF-SAMPLE PERFORMANCE

A good in-the-sample fit does not necessarily imply good out-of-sample performance. In
particular, the presence of too many parameters may cause overfitting and result in poor out-of-
sample performance.

In this section we gauge the quality of the three methods (Method 1, Method 2 and DK) in
forecasting the option prices at date t+1. We rely on date t estimated parameters and we compute
date t+1 theoretical prices, that are compared with t+1 market prices. The same indicators used to
gauge the in-the-sample fit, i.e. the SSE, the SSRPE and the MISP, are computed.

Table 6 shows the out-of-sample performance of the three methods.

SSE SSRPE MISP SSE SSRPE MISP
SSE SSRPE MISP Call Call Call Put Put Put
DK 2231.897 | 118.9831 | -0.67734 | 1869.512 | 225.1794 | -0.46907 | 2594.282 | 12.78691 | -0.71731
Method 1| 369.1174 | 132.1643 | -0.12334 | 382.2205 | 167.5055 | 0.094889 | 356.0143 | 96.82318 | -0.38221
Method 2 | 351.5752 | 54.31403 | -0.28665 | 345.8505 | 71.26512 | -0.04026 3573 37.36294 | -0.54025

Table 6. The results for all the sample.
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The results are very similar to the in-the-sample ones. The SSE of the DK method is much
higher than the one of both Methods 1 and 2 (about seven times), which suggests that both Methods
1 and 2 obtain a better fit to market prices. In terms of the SSRPE, Method 2 is superior to the other
two. The MISP indicates that the Derman and Kani method substantially underprices both option
types, more than in Methods 1 and 2.

In order to detect which option class is better priced by each method, we divide options
according to their time to maturity and their moneyness. In Table 7 options are divided into four
classes depending on their time to maturity.

Methods 1 and 2 price short term options better than other option classes, while Derman and Kani’s
method obtains mixed evidence. Overall, Methods 1 and 2 are much better than Derman and Kani’s,
especially for long term options (consistently with in-the-sample performance). The underpricing of
the Derman and Kani method is severe, particularly for puts. Method 2 is slightly better than
Method 1 for calls, especially for long term ones, while the opposite is true for puts.

In Table 8 we discuss the performance of Derman and Kani’s method, Method 1 and Method 2

respectively, in relation to the moneyness of the options.

DK

SSE SSRPE | MISP SSE SSRPE | MISP
Call Call Call Put Put Put

0-2 month | 965.6042|33.68494 | -0.69642 | 940.954 |35.17427]-0.56826 |990.2543|32.19561 | -0.77649
2-4 month | 1691.2430.201271| -0.63073 | 1589.8620.052324 | -0.43734 |1 1792.625]0.350218 | -0.72412
4-8 month [2903.526(0.119327 | -0.66264 | 2560.587 [ 0.074496 | -0.43226 [3246.465(0.164157 [ -0.76295
8-12 month | 4337.149| 0.06115 | -0.60703 | 3871.623|0.010899 | -0.30816 |4802.675|0.111401| -0.7581

SSE SSRPE MIS

Method 1
SSE SSRPE | MISP SSE SSRPE | MISP
SSE SSRPE MIs Call Call Call Put Put Put

0-2 month |329.1239(391.7411 [ 0.006393 | 339.1208 [ 493.1993 | -0.04593 319.1271 [ 290.2829 | -0.17244
2-4 month |332.6885| 6.87734 | -0.09624 | 343.828 |13.66989]0.062299 | 321.549 |0.084791| -0.35708
4-8 month [399.3219(0.233251 | -0.25671 [412.7486(0.431242{0.129249 | 385.8951 | 0.03526 | -0.52808
8-12 month | 434.25260.009523 | -0.20568 | 453.742310.007894 | 0.306936 | 414.7629|0.011153 | -0.57229

Method 2
SSE SSRPE | MISP SSE SSRPE | MISP
SSE SSRPE MIS Call Call Call Put Put Put

0-2 month |289.3947(157.1773 | -0.16113 [294.5701 [ 203.7652 | -0.15243 (284.2192 | 110.5894 | -0.36957
2-4 month |321.7942|5.574288 | -0.27962 | 312.7215| 11.06966 | -0.06977 | 330.867 | 0.078914| -0.5146
4-8 month [385.8568(0.210148 | -0.38599 [372.0952(0.382605[0.012706 [399.6184 | 0.03769 | -0.6614
8-12 month | 441.77730.010058 | -0.38359 | 430.9483 | 0.008013 | 0.10778 |452.6063|0.012103 | -0.70304

Table 7. The three methods and time to maturity.
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DK

SSE SSRPE | MISP SSE SSRPE | MISP

SSE SSRPE MIS Call Call Call Put Put Put

DOM | 1872.58 [60.68011| -0.6994 | 190.278 [80.21822| -0.5391 |[3554.883|41.14201| -0.8176
OM 2224.094(0.281155(-0.33895 | 607.766 | 0.31329 | -0.11783 [3840.422 | 0.24902 | -0.50886
AM 1844.872 | 1.494983 | -0.29154 | 1663.136|2.942323| -0.14774 | 2026.607 [ 0.047644 | -0.44633
M 2189.924(0.007403 | -0.28278 |13375.47110.010941 | -0.22743 [ 1004.378 | 0.003866 | -0.38233
DIM 1988.69 [0.001638| -0.31682 [3244.629]0.002744 | -0.28341 [732.7516|0.000532 | -0.38793

Method 1

SSE SSRPE | MISP SSE SSRPE | MISP

SSE SSRPE MIS Call Call Call Put Put Put
DOM |162.9669 | 18.3653 | -0.29407 | 141.126 [35.84651|-0.19327 | 184.8078 [ 0.884094 | -0.55881
OM 296.8426(42.01578(0.281002 |349.5409 | 70.56175 | 0.374597 [ 244.1443 | 13.46981 | 0.058412
AM 346.9351(972.9726 (0.380268|395.2703 | 1164.24 |0.547142(298.5998 | 781.7049|0.170706
M 481.0347| 0.00216 |0.237822 | 484.915 [0.002201 [ 0.445035|477.154410.0021190.013654
DIM |534.0856|0.000421 | -0.05929 |497.3995|0.000417 [0.116536|570.7717 | 0.000425 | -0.23939

Method 2

SSE SSRPE | MISP SSE SSRPE | MISP

SSE SSRPE MIS Call Call Call Put Put Put
DOM |168.6209|11.10171-0.36931 |132.7025|21.63429| -0.24457 |204.5394 (0.569121 | -0.66367
OM 260.886216.44184(0.112091|269.7659129.35314|0.244414 (252.0066 | 3.530529 | -0.21347
AM 302.5933 | 390.867 [0.113091|314.07931478.0555]0.309581 (291.1072 [303.6786 | -0.13808
IM 433.077210.00177910.051547(423.3172| 0.00181 |0.241822|442.8373]10.001748 | -0.14074
DIM |532.8754]0.000409 | -0.13305 | 487.8545|0.000401 [ 0.013539|577.8962 | 0.000418 | -0.27858

The SSE indicates that Methods 1 and 2 perform better than Derman and Kani’s in each class of
moneyness. In terms of the SSE, Method 2 is better than Method 1 for each option class except for
DOM options. The SSRPE in Methods 1 and 2 is lower than in Derman and Kani’s except for OM

and AM options. The MISP indicates that the Derman and Kani method underprices most classes of

Table 8. The three methods and moneyness.

options: the highest underpricing is observed for OM and DOM call and put options.

As expected, Method 2 underprices every option class more than Method 1. Method 2 obtains a
better pricing performance in terms of mispricing index for IM AM and OM options, the opposite
holds for DIM and DOM options. Method 2 is better than Method 1 in the pricing of Call options,
while the opposite is true for Put options.

In order to see how out-of-sample performance varies if a different number of levels (n) in the

tree is used, the results for n equal to 50 and 51 are reported in Table 9 (we compute the average

between odd and even levels performance).
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SSE | SSRPE | MISP | SSE | SSRPE | MISP
SSE- | SSRPE | MISP | con | "can | can | Pput Put Put

DK | 3433344 |10.717408 | -0.77354 | 3179.245 | 1988628 | -0.61759 | 3687.442 | 1944619 | -0,84928
Method 1] 3594763 | 2099826 | -0.1559 | 37,7006 | 274,1591 | 0,107417 | 341,252 | 1458061 | 043878
Method 2 | 343,7804 | 142,4489 | 023541 | 352,8553 | 1859835 | 0,068775 | 334,7054 | 98.91425 | -0,53067

Table 9. The out of sample performance for n equal to 50 and 51.

Compared to n=25 and 26, the SSE is slightly lower for Methods 1 and 2, while it is higher for
Derman and Kani, the SSRPE is lower for all three methods, and the MISP is lower only for
Method 2. As for the mispricing index, it points at a worst pricing performance. Therefore, we can
say that using more levels slightly improves the pricing performance of Methods 1 and 2, but does
not improve the performance of the Derman and Kani method. Differently from the standard Cox,
Ross and Rubinstein binomial model with constant volatility that improves the pricing performance
as the number of levels tends to infinity, the Derman and Kani implied tree model, which uses
different volatilities at each node, does not obtain better results if the number of levels is increased.
Due to the presence of more parameters w.r.t. Derman and Kani’s, Methods 1 and 2 obtain a
slightly better result.

Given that in Methods 1 and 2 we have to estimate parameters o and 3, we can now check how
out-of-sample performance varies, by means of a different objective function for in-the-sample

minimisation. Table 10 shows the results for the following function:

Yo Su
SSE SSRPE MISP SSE SSRPE MISP
SSE SSRPE MISP Call Call Call Put Put Put
Method 1| 373,9527 | 131,061 | -0,08276 | 393,6426 | 165,9019 | 0,144531 | 354,2629 | 96,22009 | -0,38126
Method 2 | 384,5589 | 54,09393 | -0,17903 | 385,4704 | 71,13082 | 0,075156 | 383,6474 | 37,05705 | -0,46693

Table 10. Out-of-sample performance using a different objective function in the sample.

Compared with the results obtained by using the objective function in equation (5), the SSE is
higher in both methods, while the SSRPE is slightly lower, as expected. As a matter of fact, the
function that we minimise is the SSRPE multiplied by the number of options in the class. The
overall performance of both methods is better than the one obtained by using the objective function

in equation (5), but if we analyse each option class we see that in this case the MISP is higher in
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absolute terms. We can conclude that changing the objective function to be minimised does not

substantially change the out-of-sample performance of the two methods.

7. CONCLUSIONS.

In this paper we proposed an alternative way for the estimation of implied trees from
observed option prices in markets where the put-call parity is not fulfilled. Implied trees that closely
reflect the market price of standard European options are particularly useful in the pricing and
hedging of exotic path-dependent options.

We used the same procedure as in Muzzioli and Torricelli (2002) to imply the interval tree, the
only difference being the endogenous derivation of the risk neutral probability interval. In order to
compare theoretical prices with market prices, we parameterised the stock price at each node of the
tree and we minimised the sum of squared errors, in order to extract a single implied tree. Two
Methods have been compared with Derman and Kani’s in the DAX-index options market: Method
1, based on a single parameter, and Method 2, based on two different parameters.

The results of in-the-sample and out-of-sample performance are very similar. In both cases
Method 2 obtains a slightly better performance than Method 1. It is characterised by a lower
volatility than Method 1 and, as a consequence, it prices call options and around-the-money (IM,
AM and OM) options better. The out-of-sample performance of Methods 1 and 2 does not
substantially vary if we employ a different objective function to be minimised in the sample and if
we increase the number of levels in the tree.

Overall, Methods 1 and 2, by capturing the different information carried by call and put prices,
provide a better fit of the implied tree to market option prices than Derman and Kani’s. This better
pricing performance can be attributed to a better fit of the lower part of the implied tree and a better

pricing of long term and far-from-the-money options.

REFERENCES

Barle S., N. Cakici, 1995, Growing a smiling tree, Risk, 8, 76-81.

Black F., Scholes M., 1973, “The pricing of options and corporate liabilities” Journal of
Political Economy, 81, 637-654.

Brooke A., Kendrick D., Meeraus A., Raman R., 1998, “GAMS. A User's Guide”, GAMS

Development Corporation.

18



Buckley J.J., Eslami E., Feuring T., 2002, “Fuzzy mathematics in economics and
engineering”, Phisica Verlag.

Cavallo L., Mammola P., 2000, “Empirical tests of efficiency of the Italian index options
market” Journal of Empirical Finance, 7, 173-193.

Chesney M., Gibson R., Loubergé H., 1995, “Arbitrage trading and index option pricing
at SOFFEX: an empirical study using daily and intradaily data” Finanzmarkt und Portfolio
Management, 1, 35-60.

Cox J., Ross S. and Rubinstein M., 1979, “Option pricing, a simplified approach” Journal
of Financial Economics, 7, 229-263.

Derman E., Kani L., 1994, “Riding on a smile” Risk, 7, (2), 32-39.

Dumas B., Fleming J. and Whaley R.E., 1998, “Implied volatility functions: empirical
tests”, Journal of Finance, 8 (6), 2059-2106.

Evnine J., Rudd A., 1985, “Index options, the early evidence” Journal of Finance, 40,
743-756.

Gould J.P., Galai D., 1974, “Transaction costs and the relationship between put and call
prices” Journal of Financial Economics, 1,105-129.

Kamara A., Miller T.W. Jr., 1995, “Daily and intradaily tests of European put call
parity”, Journal of Financial and Quantitative Analysis, 30, (4), 519-539.

Klemkosky R.C., Resnick B.G., 1979, “Put-call parity and market efficiency” The
Journal of Finance, 34, (5), 1141-1155.

Mittnik S., Rieken S., 2000, “Put — call parity and the informational efficiency of the
German DAX index options market” International Review of Financial Analysis, 9, 259-
279.

Murtagh B.A., Saunders M.A., 1978, “Large-scale linearly constrained optimization”
Mathematical Programming, 14, 41-72.

Murtagh B.A., Saunders M.A., Murray W., Gill P.E., Raman R., Kalvelagen E., 2002,
“GAMS/MINOS: A Solver for Large-scale Nonlinear Optimization Problems”, GAMS
Development Corporation.

Muzzioli S., Torricelli C., 2002, “Implied trees in illiquid markets, a Choquet pricing
approach” International Journal of Intelligent Systems, 17, (6), 577-594.

Muzzioli S., Torricelli C., 2003, “The pricing of options on an interval binomial tree, an
application to the DAX-index option market” European Journal of Operations Research,
accepted.

Rubinstein, 1994, Implied binomial trees, Journal of Finance 49, 771-818.

19



Stoll H.R., 1969, “The relationship between put and call options prices” Journal of
Finance 24, 801-824.
Wolfe P., 1962, The reduced-gradient method, unpublished manuscript, RAND

Corporation.

Appendix. The derivation of the risk-neutral probability interval.
Let us briefly recall the assumptions of Muzzioli and Torricelli (2002). Let » > 0 be the
continuously compounded risk free rate; X be the real line, representing a set of monetary values

and let F be the set of all intervals of X i.e. the set of closed bounded sets of real numbers:

Al) [S(, j),g(i, J)] € F is the stock price at time j in state 1, where S(i, j)£§(i, ]); as a special case,
S(0,0)e X 1is the spot price at time zero and it is crisp (i.e. a collapsed interval). The bounds of the
stock price interval at each node are determined by both call and put options.

A2) No arbitrage opportunities are allowed:

S, j+1) <SG, j)-e™ <S@, j)-e™ <S@E+1,j+1),

(see the corresponding values, in bold, in Figure 5). As we have interval values for the stock
prices, this condition guarantees that if the interval collapses to a crisp value, the “standard” no
arbitrage condition is fulfilled (ie. S, j+1)<S@Gj)-1+r)<S@E+1,7j+1), where
S, j+1),5G,j), SE+1,j+)eX).

[SG+1,j+1), SG+1,j+1)]
p.,;(U)

[SGs §)> SGs )]

p.;(D)
[S(i,j+1), SG,j+1)]

Figure 5. Three nodes of the tree with the corresponding risk neutral probabilities.

Under assumptions Al) and A2) we show that there exists a risk neutral probability measure s.t.

any contingent claim C can be valued as:

C()=e™E,(C(j+D).

Let us examine the one period binomial sub tree of length At =7/n represented in Figure 5. Two
are the securities traded in the market: the money market account and the stock. The money market
account is worth / at time j and e™ at time j+1, j=0, ...,n. The stock price is §(i,j) = [§(i,j),§(i,j)]
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at time j, and at time j+1 is §(i+1,j+l) =[§(i+l,j+1),§(i+l,j+l)] if it moves up,
S@i,j+1)=[S@, j+1),8G, j+1)] if it moves down.

Let p,;(U) be the artificial probability measure of an up move from node (i,j) to node
(i+Lj+1) and p, (D) be the artificial probability measure of a down move from node (i, /) to
node (i,j+1).

We derive the set of risk neutral probability measures by means of the risk neutral argument, i.e.

by solving the following system:

e (pl., S(e™ +p, (D)e"™ ):l
™ (p (U)SG+1,j+1),8G+1,j + D]+ p, ,(D)SGij +1),5G, j +1)]) =[S /.5, /)]

where the first and the second equation represents the risk neutral valuation of the money

(6)

market account and of the stock respectively.
By simplifying system (6) we get:
{pi,j )+ P (D)=1

_ _ _ (7)
P, OSE+1,j+1),8G +1, j+ D]+ p, ;(D)SG, j +1),SG, j+D]=[SC, /),SC, j)le™

In order to solve this system we resort to interval analysis and we use the solution method
proposed in Buckley et al. (2002). Note that by the no arbitrage assumption A2) the determinant of
system (7) is never zero.

Buckley et al. (2002) propose to solve the corresponding crisp system:
p;U)+p,;(D)=1

{ P ()SE+1,j+D)+ p, (D)SG, j+1) = S(, j)e™

by using Cramer’s rule to solve for each unknown:

S@, He™ —-S3, j+1
pj,j(U)z ( J). ( j )
SE+1Lj+1)-S3G,j+1)
SG+1j+1)-SG3,j)e™
SE+1Lj+1)-S3G,j+1)

pj,j(D):

and investigate the interval solution, [p. ; (K ),;w (K)] for K = {U ,D}as follows:

SG, ) elSa, j),SG, N, SG+1,j+1) e[SG+1,j+1),SG +1, j+1)],}

Pi~(K)=min{Pz,j(K) o S
7/ S j+1)e[SGE j+1),S3G, j+1)]

S@, /) e[SG, /), S, N, SG+1,j+1) e[S +1,7+1),SG +1, j +1)],
SG, j+) e[SG, j+1),S3, j+1)]

;i,j(K) =max{pi,j(K
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ap; ;(U) ap; ;(U) ap; ;(U) ap; ;(D) ap; ;(U)
>0 5 <0 N <0 . <0 . >
0SG.j) oSG+ j+1) oSG j+1) - 8SGj) - oSG+ j+1)

By noting that:

p:;(U)

>0 we get:
oS(i,j+1)

S@, e™ —S3, j+1
g..(U)=—‘.( ]). S.]. )
n SE+Lj+1)-S83,j+1)

S(i, j)e™ — (i, j+1)
S@i+1,j+1)=S(i,j+1)

;i,j )=

S@i+1,j+1)—S3, j)e™
§(l+15.]+1)_§(15.]+1)

P, D)=

S@+1,j+1) =S, j)e™
SG+1,j+1)=S@, j+1)

P, (D)=
Let Q= {U,D} be the sample space and M = {@,U,D,Q}be an algebra of subsets of Q, it is

easy to check that P, (K) and ;i, ;(K) are upper and lower probabilities, since they satisfy the

following properties VA,B e M :

1) 0< p(4)<1,0< p(4)<1,

2) p(@)=0, p(@)=0, p()=1, p(Q)=1

3)if A< Bthen p(A)< p(B) p(A)< p(B)

4) p(A)+ p(49) =1

5) p(AUB)2p(A)+p(B), AnB=Y

6) p(AUB)< p(A)+ p(B), ANB=Q0
5") p(4UB)+ p(An B)2 p(4) + p(B)

6”) p(AU B) + p(AN B)< p(4) + p(B).
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