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OPTION IMPLIED TREES  

 WHEN THE PUT-CALL PARITY IS NOT FULFILLED*

V. Moriggia, S. Muzzioli, C. Torricelli  

 

Abstract 

Standard methodologies for the derivation of implied trees from option prices are based on 

the validity of the put-call parity. Muzzioli and Torricelli (2002) propose a methodology which 

accounts for PCP violations. Based on this latter approach the present paper advances in two main 

directions. First we propose a different methodology in order to imply the interval of artificial 

probabilities at each node of the tree. Secondly, we perform an empirical validation of the implied 

tree obtained, both in the sample and out of sample, by using DAX index options data set covering 

the period from January 4, 1999 to December 28, 2000. Numerical results are compared with one of 

the most used standard methodologies, i.e. Derman and Kani’s. The results suggest that the 

estimation proposed, by taking into account the informational content of both call and put prices, 

highly improves both the in-the-sample fitting and the out-of-sample performance.  
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1. INTRODUCTION 

 

In the literature, various methods for deriving implied trees consistent with the so-called 

smile effect and the term structure of volatility have been proposed (see among others Derman and 

Kani (1994), Rubinstein (1994), Barle and Cakici (1995)). However, these methods disregard the 

issue of a different volatility implied by call and put prices (written on the same underlying and 

with the same strike price and time to maturity). Empirical evidence is presented, among others,  by 

Chesney, Gibson and Loubergé (1995) and Cavallo and Mammola (2000), about the fact that the 

volatility implied by call prices is generally lower than the one implied by put prices. When there is 

 
* Some early results of this paper first appeared in “Option implied trees under put call parity violations”, by V. 
Moriggia, S. Muzzioli and C. Torricelli, Working Paper n.3 (2003), DMSIA, University of Bergamo. Partially 
supported by MIUR 60% 2003 grant (scientific coordinator: V. Moriggia) and by CNR/MIUR CU03.0010S PF/25. 
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a substantial difference between the volatility implied by call and put prices, substantial pricing 

errors may derive from taking into account only one set of options. 

Muzzioli and Torricelli (2002) address the issue and obtain the following results. They 

propose a methodology for the derivation of implied trees that takes into account the information 

stemming from both call option and put option prices. The method basically extends Derman and 

Kani’s (1994), whereby call (put) prices are also used in the lower (upper) part of the tree thus 

exploiting the information content of both call and put prices. The tree, called the PC-implied tree, 

is characterised by interval values for the underlying stock prices and probabilities. In Muzzioli and 

Torricelli (2002) the authors do not provide any implementation with market data of the 

methodology proposed and, as a consequence, they do not address the issue of selecting a crisp 

implied tree among all the possible implied trees. 

In Muzzioli and Torricelli (2003), the authors tackle the implementation issue, by providing 

an example on two dates that shows how the resulting tree captures the different smiles of call and 

put options. They address two main problems that arise from the implementation issue. First they 

suggest a way to check for no arbitrage when aggregating the call and put implied trees. Secondly, 

they provide a methodology in order to select, among all the possible implied trees, a single tree 

characterised by crisp values for stock prices and probabilities. 

The aim of our paper is twofold. First, by dropping assumption A3) of Muzzioli and 

Torricelli (2002), we propose a different methodology in order to imply the interval of artificial 

probabilities at each node. This methodology results in a different estimation (w.r.t. Muzzioli and 

Torricelli (2003)) of the implied tree by means of market data. Secondly, we perform an empirical 

validation of the implied tree obtained, both in the sample and out of sample, by using the DAX 

index options data set covering the period from January 4, 1999 to December 28, 2000. Numerical 

results are compared with Derman and Kani’s. 

The plan of the paper in the next sections is the following. In Section 2 we briefly recall the 

Muzzioli and Torricelli (MT) method for the derivation of the put-call (PC) implied tree and we 

highlight the different methodology proposed in the present article in order to extract the artificial 

probability interval at each node. In Section 3 we explain the estimation procedure used to select 

crisp values for the stock prices and the probabilities. In section 4 we present the data set and the 

methodology used in the implementation. In Sections 5 and 6 we illustrate the in-the-sample and 

out-of-sample performance respectively, compared to Derman and Kani’s (DK). The last section 

concludes. In the Appendix we show the derivation of the risk neutral probability interval. 
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2. THE METHODOLOGY FOR THE DERIVATION OF THE PC-IMPLIED TREE 

 

In this section we illustrate, by means of an example, the Muzzioli and Torricelli (2002) method 

for the derivation of the stock price intervals of the put-call (PC) implied tree, and we highlight the 

different methodology we propose in order to extract the artificial probability interval at each node. 

Specifically, the main difference stems from the fact that, while keeping assumptions A1) and A2) 

of the Muzzioli and Torricelli (2002) method, we drop assumption A3).  

Derman and Kani’s (1994) method implicitly assumes the validity of the Put-Call-Parity (PCP). 

In order to apply the same type of methodology to markets characterised by PCP violations and to 

exploit the whole market information, the MT method basically extends Derman and Kani’s by 

using call prices also in the lower part of the tree and put prices also in the upper part, thus 

exploiting all the information content of call and put prices. In the following we provide an example 

that illustrates how the tree is implied (for details, see the original paper). 

Essentially, the MT method proposes: a) to construct two implied trees, one using only the 

information provided by call options and the other using only information provided by put options; 

b) to aggregate the two trees by taking the implied stock prices as bounds for a price interval.  

The initial inputs are: the term structure of risk-free interest rates, the stock price at time zero and 

the interpolated smile function for call and put prices belonging to a class characterised by a 

specific date and a specific maturity. In this example we construct a PC-implied tree with n=6 

levels, on 6th January 2000, for options with maturity February. The Dax-index value is  6949.47, 

the interpolated risk-free rate is 3.19%, the smile function for call options is σC = 0.38132547 –

0.00001995X and the smile function for put options is σP = 0.44034707 – 0.00001964X, where X is 

the strike price and σ is the volatility. 

The same methodology as Derman and Kani’s for the derivation of the implied tree is used, the 

only difference being the use of call options also in the lower part of the tree for the derivation of 

the call implied tree and the use of put options also in the upper part of the tree for the derivation of 

the put implied tree. At each node, the no-arbitrage check, the Barle and Cakici (1995) condition is 

used to exclude arbitrage. The two trees obtained are reported in Figures 2 and 3 respectively. 

The MT method suggests the aggregation of the two trees into a single tree characterised by 

interval values for stock prices, whose bounds are, at each node of the tree, the minimum and the 

maximum of the  stock prices implied by the call and the put options. In this way all the information 

stemming from call and put prices is summed up in a single tree.  
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Figure 1. The tree implied by using only call prices. 
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Figure 2. The tree implied by using only put prices. 
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Figure 3. The P-C implied tree for the stock prices. 



When aggregating the two trees, it is necessary to check, at each step, that the newly determined 

stock prices and probabilities are consistent with the no arbitrage condition, so that the PC-implied 

tree is arbitrage free. Note that, as the volatility implied by put prices is bigger than the one implied 

by call prices, the put implied prices are the most external. The resulting tree is reported in Figure 3 

and a generalisation of two levels of the same is illustrated in Figure 4.  

 

 

Muzzioli and 

of artificial pr

probabilities i

A3) and we 

valuation form

 ,1( ++ jip

We are thu

the given st

),1,1([ ++ jip

),1,1([ ++ jiS

++ ,1([ jip

In the Append

Note that t

contained in th

 

[S
)]j(i,S,j)(i,S[
5

Figure 4. Four nodes of the Pc-

Torricelli (2002), by means of assumption A3)

obabilities at each node, by taking the minim

mplied by the call or the put options respectiv

derive the artificial probabilities endogenous

ula: 

)1,()1,1(
)1,(),()1

+−++
+−

=
∆

jiSjiS
jiSejiS tr

s in a position to find the largest interval of ri

ock price intervals. Specifically, the set

)]1,1( ++ jip consistent with the s

)]1,1( ++ jiS and )],(),,([ jiSjiS , is given by 






+−++
+−

=++
∆

(
,

)1,()1,1(
)1,(),()]1,1(),1

S
S

jiSjiS
jiSejiSjip

tr

ix we show the derivation and the properties of

he interval of artificial probabilities proposed

is interval. 

(i-1,j) , S(i-1,j)]
[ )1j,1(iS ++++++++ , 1)j,1(iS ++ ]
),1,([ +jiS 1)j,i(S ++++ ]
implied tree. 

, suggest the implication of the interval 

um and the maximum of the artificial 

ely. In this paper we drop assumption 

ly by using the standard risk neutral 

sk neutral probabilities consistent with 

 of all the artificial probabilities 

tock prices )]1,(),1,([ ++ jiSjiS ,

the following interval: 





+−++

+−∆

)1,()1,1
)1,(),(

jiSji
jiSeji tr

. (1) 

 this risk neutral probability interval. 

 in Muzzioli and Torricelli (2002) is 



6

3. THE ESTIMATION PROCEDURE 

 

In this section we propose a different estimation procedure of the implied tree, consistently with 

the different methodology used to imply the artificial probability intervals. As stressed in the 

previous section, the latter differs from Muzzioli and Torricelli (2003) and so does the estimation 

procedure.  

In Muzzioli and Torricelli (2003), the authors propose to identify parameters for both stock 

prices and probabilities as follows: 

( , ) ( , ) (1 ) ( , )p i j p i j p i jα α α= + −

( , ) ( , ) (1 ) ( , )S i j S i j S i jα α α= + −

where ]1,0[∈α .

and estimate the parameter α, by solving the following non linear optimisation problem: 

2
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where fT(α) is the theoretical price of the option, fM is its market price, m is the number of 

options and the constraint on the stock price is necessary in order to have a risk neutral tree.  

In this application we only identify a parameter for the stock prices and we derive the 

corresponding artificial probabilities (by means of the risk neutral argument).  

Two methods are used and compared: Method 1, based on a single parameter, and Method 2, 

based on two parameters.  
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Method 2 better captures the smile effect, since it separates the nodes in the upper part, usually 

characterised by lower volatility, from the nodes in the lower part of the tree, usually characterised 

by higher volatility.  

At each node (i, j) of the tree, the corresponding risk neutral probabilities are derived as follows: 
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The Arrow-Debreu prices ),( jivλ are computed by forward induction as the sum over all paths 

leading to node (i, j) of the product of the parameterised risk neutral probabilities of an up move, 

),( jipv , discounted at the risk-free rate at each node in each path. 

The theoretical call and put prices are: 

∑
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We estimate the parameter vector ν, by solving the following non linear optimisation problem: 

2

1
))((min M

m

i
Tv

fvf −∑
=

(5) 

where fT(ν) is the theoretical price of a call (Cν) and a put option (Pν),  fM is its market price, m is 

the number of options in the class.  

 

4. NUMERICAL EXPERIMENTS 

 

In this section we describe the data set used, and illustrate the implementation of our 

methodology. 

 

4.1 THE DATA SET 

To evaluate the accuracy of the PC-implied tree, with respect to the DK method, in fitting the 

observed option market prices of options, we provide an application to DAX-index options.  

We use the DAX-index options market for two main reasons: first, it is a relatively new 

European market where short-selling restrictions may induce put-call parity deviations (see e.g. 

Mittnik S. and Rieken S., 2000); secondly, the nature of the option (European) and of the 

underlying (dividends reinvested in the index) simplifies the estimation because neither the 

estimation of the early exercise premium nor the estimation of the dividend payments is required.  

DAX-options started trading on the German Options and Futures Exchange (EUREX) in August 

1991. They are European options on the DAX-index, which is a capital weighted performance index 

composed of 30 major German stocks and is adjusted for dividends, stocks splits and changes in 

capital. Since dividends are assumed to be reinvested into shares, they do not affect the index value. 

This latter feature, together with the option type (European), avoids the estimation problems of both 

dividend payments and early exercise premium. 
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DAX-index options are quoted in index points, carried out one decimal place. The contract value 

is EUR 5 per DAX index point. The tick size is 0.1 of a point representing a value of EUR 0.50. 

They are cash settled, payable on the first exchange trading day immediately following the last 

trading day. The last trading day is the third Friday of the expiry month, if that is an exchange 

trading day, otherwise the exchange trading day immediately prior to that Friday. The final 

settlement price is the value of the DAX determined on the basis of the collective prices of the 

shares contained on the DAX index as reflected in the intra-day trading auction on the electronic 

system of the Frankfurt Stock Exchange. Expiry months are the three near calendar months within 

the cycle March, June, September and December as well as the two following months of the cycle 

June and December.  

The data set consists of settlements of DAX-index options, with maturities up to one year, 

recorded from January 4, 1999 to December 28, 2000. The data set on DAX-index options is kindly 

provided by Deutsche Börse AG. For the underlying, we used the settlements of the DAX-index in 

the same time period. As a proxy for the risk-free rate we use the Fibor rates with maturities up to 

one year: the appropriate yield to maturity is computed by linear interpolation. The data set on 

DAX-index and risk-free rates is available in Data-Stream.  

 

4.2 THE METHODOLOGY 

Options with same expiry month and year are grouped in 2882 classes. In each class the average 

number of options is 76 and the number of call options is always equal to the number of put 

options.  

The volatility smile is estimated separately for call and put prices in each class, by using  market 

prices to compute the volatility implied by the Black and Scholes formula. The obtained implied 

volatilities are then interpolated with respect to the strike price by means of a linear1 function of the 

following form: 

σ(X) = a0 + a1 X

To compute the implied volatilities we use the bisection method in C++. The volatility smile is 

obtained solving a least square problem implemented in GAMS ver. 20.7, using the solver 

MINOS 5.4. 

As for the Derman and Kani method, the inputs are: the underlying spot price, the risk-free 

interest rate and the smile. Recall that in this application we assume that the smile is the same at 

each date until maturity. The DK method is characterised by taking the smile implied by call 

 
1 The linear function has been chosen after a comparison with other usual polynomial interpolations for two main 
reasons: first, the shape of the implied volatilities of  DAX-index options is much closer to a linear shape; secondly,  it 
avoids over-parameterisation. 
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options for strikes greater or equal to the value of the underlying and that implied by put options for 

strikes smaller than the value of the underlying. The DK tree is then derived following the 

procedure detailed in Derman and Kani (1994), with the only exception of the Barle and Cakici 

condition which is used to check for no arbitrage violations instead of the one proposed in Derman 

and Kani (1994).  

As for the Muzzioli and Torricelli method, the inputs are: the underlying value, the risk-free 

interest rate and the two smile functions implied by call and put options. We derive two trees, one 

using the smile implied by call options and the other using the smile implied by put options. Each 

tree is derived following the Derman and Kani methodology recalled above. Then we aggregate 

them in order to have a single implied tree with interval values for the stock prices. At each newly 

determined node we check the no arbitrage condition by means of the procedure explained in 

Muzzioli and Torricelli (2003). At each node, we parameterise the stock prices by means of 

equation (2) for Method 1 and equation (3) for Method 2 and we derive the interval of the artificial 

probabilities by means of equation (4). Finally, we run the non linear optimisation routine (5) in 

order to get crisp values for the stock prices and probabilities. The routine is implemented in GAMS 

ver. 20.7 and solved by MINOS 5.4. through a reduced-gradient algorithm (cf. Wolfe, 1962) 

combined with a quasi-Newton algorithm that is described in Murtagh and Saunders (1978). 

As the choice of the number (odd or even) of the binomial tree levels implies different estimates 

of the price, both the PC-tree and the DK tree prices are computed as the average between odd and 

even levels. We assume a binomial tree with 25 and 26 levels. 

 

5. IN-THE-SAMPLE PERFORMANCE 

 

The aim of this section is to evaluate and compare the quality of the three methods (Method 1, 

Method 2 and DK) in fitting options market prices. To this end, three indicators are selected and 

computed on each day for each option class and then averaged across the sample: the sum of 

squared errors (SSE), the sum of squared relative pricing errors (SSRPE) and the index of 

mispricing (MISP); they are respectively defined as follows: 
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iP are respectively the theoretical and the market price of option i , i = 1, …, m and m is 

the number of options in the class. 

The SSE is an indicator of the implied tree fit to option prices, it naturally increases with the 

moneyness of the option. By minimising the SSE, more importance is therefore placed on in- the-

money options. In contrast, the SSRPE, being a percentage error, does not suffer from such a 

drawback. However, for out-of-the-money options (i.e. very low prices), the SSRPE is typically 

higher than it is for other option classes. The mispricing index ranges from –1 to 1 and indicates, on 

average, the overpricing (positive MISP) or underpricing (negative MISP) induced by the method. 

Table 1 reports the results for Method 1, Method 2, and Derman and Kani’s (DK).  

 

Table 1. The results for the whole sample. 

 

DK’s SSE is much higher (about nine times) than the one obtained by means of Methods 1 and 2, 

which suggests that both Methods 1 and 2 obtain a better fit to market prices. The SSRPE is highly 

in favour of both Methods 1 and 2, particularly for put prices. The MISP indicates that the Derman 

and Kani method substantially underprices both option classes, while in Methods 1 and 2 the 

underpricing is lower, especially for call options. Method 1 underprices both classes of options less 

than Method 2. Overall, Method 2 performs slightly better than Method 1, due to the better pricing 

of call options, even if it underprices both classes of options more than Method 1. 

In order to analyse the different performance of Methods 1 and 2, we report the average 

parameter estimates in Table 2 (standard errors are in parenthesis). 

 
Method 1 Method 2 

alpha 0.65 (0.42) 0.88 (0.25) 

beta  0.23 (0.33) 

Table 2. The average parameter estimates in Methods 1 and 2. 

 SSE SSRPE MISP SSE  
Call 

SSRPE  
Call 

MISP 
Call 

SSE  
Put 

SSRPE  
Put 

MISP  
Put 

DK 1947.77 166.75 -0.61 1618.53 252.45 -0.46 2277.00 81.06 -0.64 
Method 1 248.13 11.51 -0.12 250.70 19.73 0.16 245.55 3.29 -0.35 
Method 2 230.67 9.11 -0.32 197.40 15.12 -0.01 263.94 3.09 -0.47 
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The overall better fit of  Method 2 can thus be explained with the difference in the two parameter 

estimates and the associated lower standard errors. The two parameter estimates in Method 2 

indicate that nodes in the upper part of the tree have a different volatility content than nodes in the 

lower part, a feature which is only partially captured by Method 1, where the single parameter alpha 

is roughly a weighted average of the two parameters in Method 2.  

Moreover, in Method 2, alpha is bigger than beta, indicating on average a preference for the lower 

bound of the stock price intervals in the upper part of the tree and a preference for the upper bound 

of the interval in the lower part of the tree. It follows that on average the volatility implied by 

Method 2 is less than the one implied by Method 1; as a result, the underpricing of each option class 

is bigger in Method 2 than in Method 1.  

In order to detect which option class is better priced by each method, we divide options 

according to their time to maturity and their moneyness. In Table 3 options are divided into four 

classes depending on their time to maturity.  

All three methods obtain a better pricing performance for short term options. However,  Methods 1 

and 2 are much better than Derman and Kani’s in relation to the SSE, especially for long term 

options. Note that the SSE naturally increases from short term to long term options. The SSRPE 

displays an opposite pattern (it is usually higher for less expensive options) and is better in Methods 

1 and 2 except for the two intermediate time to maturity classes. Underpricing is severe with the 

Derman and Kani method, particularly for puts. Method 2 is slightly better than Method 1 for calls, 

while the opposite is true for puts.  

Overall, Method 2 obtains a better performance than Method 1 in terms of SSE, while it underprices 

more (overprices less) than Method 1.  
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DK 

SSE SSRPE MIS SSE  
Call 

SSRPE 
Call 

MISP 
Call 

SSE  
Put 

SSRPE 
Put 

MISP 
Put 

0-2 month 912.3868 505.2384 -0.5452 844.3079 766.5735 -0.5680 980.4657 243.9033 -0.5438 
2-4 month 1430.3877 1.6028 -0.5917 1253.4572 0.0613 -0.4489 1607.3183 3.1444 -0.6134 
4-8 month 2500.6870 0.1040 -0.6943 2066.7509 0.0359 -0.4331 2934.6232 0.1722 -0.7500 

8-12 month 3435.8224 0.0548 -0.6249 2672.3172 0.0093 -0.3365 4199.3275 0.1003 -0.6990 
Method 1 

SSE SSRPE MIS SSE  
Call 

SSRPE 
Call 

MISP 
Call 

SSE  
Put 

SSRPE 
Put 

MISP 
Put 

0-2 month 229.7189 24.8059 0.0758 248.6046 39.7172 0.0044 210.8332 9.8946 -0.0795 
2-4 month 216.8319 14.7690 -0.1321 221.8131 29.4537 0.1075 211.8507 0.0843 -0.3474 
4-8 month 273.0739 0.4573 -0.2918 284.0246 0.8802 0.1956 262.1233 0.0343 -0.5435 

8-12 month 280.5897 0.0103 -0.2101 247.2621 0.0091 0.3912 313.9173 0.0114 -0.5664 
Method 2 

SSE SSRPE MIS SSE  
Call 

SSRPE 
Call 

MISP 
Call 

SSE  
Put 

SSRPE 
Put 

MISP 
Put 

0-2 month 189.4195 19.0855 -0.1173 174.8312 28.8777 -0.1264 204.0077 9.2934 -0.2423 
2-4 month 215.6399 12.4311 -0.3613 172.1900 24.7829 -0.0870 259.0898 0.0792 -0.4311 
4-8 month 256.3992 0.4201 -0.4466 234.2797 0.8039 0.0604 278.5188 0.0363 -0.6370 

8-12 month 280.4152 0.0107 -0.4356 217.3034 0.0092 0.1880 343.5269 0.0123 -0.6578 

Table 3. The three methods and time to maturity. 

 

Table 4 shows how the average parameter estimates vary in Methods 1 and 2, depending on time to 

maturity. The parameter estimates appear quite stable across classes.  

 

Method 1 
Alpha 

Method2 
alpha 

Method2 
beta 

0-2 month 0.76 0.87 0.14 
(0.41) (0.27) (0.29) 

2-4 month 0.59 0.85 0.18 
(0.44) (0.28) (0.30) 

4-8 month 0.66 0.88 0.32 
(0.40) (0.24) (0.35) 

8-12 month 0.53 0.89 0.30 
(0.39) (0.18) (0.35) 

Table 4. The parameter estimates for Method 1 and Method 2. 

 

In Method 2, alpha is always bigger than beta, indicating that the volatility implied by Method 2 is 

less than the one implied by Method 1. It follows that the underpricing (overpricing) of each option 

class is bigger in Method 2 than in Method 1.  

In Table 5 we report the performance of the Derman and Kani method, Method 1 and Method 2 in 

relation to the moneyness of the options. According to the indicator of moneyness M = S/(Ke–rT), 
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where S is the underlying value and K the strike price of the option, we divide call and put option 

prices into the following five classes: DOM (deep-out-of-the-money, call options: M < 0.9 and put 

options: M > 1.1), OM (out-of-the-money, call options: 0.9 ≤ M < 0.98 and put options: 1.02 < M ≤

1.1), AM (at-the-money, call and put options: 0.98 ≤ M ≤ 1.02), IM (in-the-money, call options: 

1.02 < M ≤ 1.1 and put options 0.9 ≤ M < 0.98), DIM (deep-in-the-money, call options: M > 1.1 and 

put options: M < 0.9).  

The SSE indicates that Methods 1 and 2 perform better than Derman and Kani’s in each class of 

moneyness, particularly for in-the-money calls and out-of-the-money puts. It follows that the worst 

fit of the DK method is observed in the lower part of the tree, i.e. the one derived by using out-of- 

the-money puts. The SSRPE of Methods 1 and 2 is always lower than Derman and Kani’s, except 

for IM and DIM puts (but the difference is very low). The MISP indicates that the Derman and Kani 

method underprices most classes of options: the highest underpricing is observed for DIM and 

DOM call and put options.  

As expected, Method 2 underprices every option class more than Method 1. Method 2 obtains a 

better pricing performance for IM AM and OM options, the opposite holds for DIM and DOM 

options.  Method 2 is better than Method 1 in the pricing of Call options, while the opposite holds 

for Put options. As the volatility implied by call options is usually lower than the one implied by put 

options, Call options were expected  to be priced better by the lower volatility tree (Method 2).  
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DK 

SSE SSRPE MIS SSE  
Call 

SSRPE 
Call 

MISP 
Call 

SSE  
Put 

SSRPE 
Put 

MISP 
Put 

DOM 1922.343 182.0114 -0.70966 177.1344 349.6053 -0.60033 3667.551 14.41749 -0.82091
OM 2274.105 24.21194 -1.25414 528.8513 48.1287 -0.02289 4019.359 0.295178 -0.37643
AM 1812.499 626.631 -0.10748 1440.463 1184.041 -0.01663 2184.536 69.22069 -0.36978
IM 2038.402 0.007021 -0.27001 3081.275 0.010231 -0.19746 995.5284 0.00381 -0.39543

DIM 1785.096 0.001493 -0.38826 2945.494 0.002536 -0.35411 624.6985 0.000449 -0.46122
Method 1 

SSE SSRPE MIS SSE  
Call 

SSRPE 
Call 

MISP 
Call 

SSE  
Put 

SSRPE 
Put 

MISP 
Put 

DOM 179.9587 24.38209 -0.27457 154.5186 47.66418 -0.18519 205.3988 1.099998 -0.51937
OM 321.09 5.387053 0.375748 365.0524 9.058691 0.424837 277.1277 1.715415 0.074633
AM 275.9532 22.42565 0.48038 309.0861 24.05294 0.662258 242.8203 20.79836 0.270609
IM 238.7734 0.00127 0.365786 251.0423 0.001351 0.662797 226.5046 0.001189 0.024515

DIM 260.8418 0.000204 -0.10528 224.1132 0.000184 0.196358 297.5705 0.000225 -0.36111
Method 2 

SSE SSRPE MIS SSE  
Call 

SSRPE 
Call 

MISP 
Call 

SSE  
Put 

SSRPE 
Put 

MISP 
Put 

DOM 187.8214 17.10353 -0.35151 146.9532 33.39706 -0.24941 228.6895 0.810008 -0.60818
OM 281.6242 3.987007 0.513863 271.4583 6.681073 0.282644 291.7902 1.292941 -0.14206
AM 228.3327 21.92721 0.199579 193.673 23.51629 0.448042 262.9924 20.33814 -0.05861
IM 193.5049 0.000924 0.049939 169.1523 0.000822 0.305628 217.8575 0.001026 -0.16525

DIM 265.5256 0.000199 -0.24582 218.9244 0.000168 -0.0448 312.1268 0.00023 -0.39966

Table 5. The three methods and moneyness. 

 

6. OUT-OF-SAMPLE PERFORMANCE 

 

A good in-the-sample fit does not necessarily imply good out-of-sample performance. In 

particular, the presence of too many parameters may cause overfitting and result in poor out-of- 

sample performance.  

In this section we gauge the quality of the three methods (Method 1, Method 2 and DK) in 

forecasting the option prices at date t+1. We rely on date t estimated parameters and we compute 

date t+1 theoretical prices, that are compared with t+1 market prices. The same indicators used to 

gauge the in-the-sample fit, i.e. the SSE, the SSRPE and the MISP, are computed. 

Table 6 shows the out-of-sample performance of the three methods. 

 

SSE SSRPE MISP SSE  
Call 

SSRPE
Call 

MISP 
Call 

SSE 
Put 

SSRPE
Put 

MISP 
Put 

DK 2231.897 118.9831 -0.67734 1869.512 225.1794 -0.46907 2594.282 12.78691 -0.71731 

Method 1 369.1174 132.1643 -0.12334 382.2205 167.5055 0.094889 356.0143 96.82318 -0.38221 

Method 2 351.5752 54.31403 -0.28665 345.8505 71.26512 -0.04026 357.3 37.36294 -0.54025 

Table 6. The results for all the sample. 
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The results are very similar to the in-the-sample ones. The SSE of the DK method is much 

higher than the one of both Methods 1 and 2 (about seven times), which suggests that both Methods 

1 and 2 obtain a better fit to market prices. In terms of the SSRPE, Method 2 is superior to the other 

two. The MISP indicates that the Derman and Kani method substantially underprices both option 

types, more than in Methods 1 and 2.  

In order to detect which option class is better priced by each method, we divide options 

according to their time to maturity and their moneyness. In Table 7 options are divided into four 

classes depending on their time to maturity.  

Methods 1 and 2 price short term options better than other option classes, while Derman and Kani’s 

method obtains mixed evidence. Overall, Methods 1 and 2 are much better than Derman and Kani’s, 

especially for long term options (consistently with in-the-sample performance). The underpricing of 

the Derman and Kani method is severe, particularly for puts. Method 2 is slightly better than 

Method 1 for calls, especially for long term ones, while the opposite is true for puts.  

In Table 8 we discuss the performance of Derman and Kani’s method, Method 1 and Method 2 

respectively, in relation to the moneyness of the options.  

 

DK 

SSE SSRPE MIS SSE  
Call 

SSRPE 
Call 

MISP 
Call 

SSE  
Put 

SSRPE 
Put 

MISP 
Put 

0-2 month 965.6042 33.68494 -0.69642 940.954 35.17427 -0.56826 990.2543 32.19561 -0.77649
2-4 month 1691.243 0.201271 -0.63073 1589.862 0.052324 -0.43734 1792.625 0.350218 -0.72412
4-8 month 2903.526 0.119327 -0.66264 2560.587 0.074496 -0.43226 3246.465 0.164157 -0.76295

8-12 month 4337.149 0.06115 -0.60703 3871.623 0.010899 -0.30816 4802.675 0.111401 -0.7581 
Method 1 

SSE SSRPE MIS SSE  
Call 

SSRPE 
Call 

MISP 
Call 

SSE  
Put 

SSRPE 
Put 

MISP 
Put 

0-2 month 329.1239 391.7411 0.006393 339.1208 493.1993 -0.04593 319.1271 290.2829 -0.17244
2-4 month 332.6885 6.87734 -0.09624 343.828 13.66989 0.062299 321.549 0.084791 -0.35708
4-8 month 399.3219 0.233251 -0.25671 412.7486 0.431242 0.129249 385.8951 0.03526 -0.52808

8-12 month 434.2526 0.009523 -0.20568 453.7423 0.007894 0.306936 414.7629 0.011153 -0.57229
Method 2 

SSE SSRPE MIS SSE  
Call 

SSRPE 
Call 

MISP 
Call 

SSE  
Put 

SSRPE 
Put 

MISP 
Put 

0-2 month 289.3947 157.1773 -0.16113 294.5701 203.7652 -0.15243 284.2192 110.5894 -0.36957
2-4 month 321.7942 5.574288 -0.27962 312.7215 11.06966 -0.06977 330.867 0.078914 -0.5146 
4-8 month 385.8568 0.210148 -0.38599 372.0952 0.382605 0.012706 399.6184 0.03769 -0.6614 

8-12 month 441.7773 0.010058 -0.38359 430.9483 0.008013 0.10778 452.6063 0.012103 -0.70304

Table 7. The three methods and time to maturity. 
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DK 

SSE SSRPE MIS SSE  
Call 

SSRPE 
Call 

MISP 
Call 

SSE  
Put 

SSRPE 
Put 

MISP 
Put 

DOM 1872.58 60.68011 -0.6994 190.278 80.21822 -0.5391 3554.883 41.14201 -0.8176 
OM 2224.094 0.281155 -0.33895 607.766 0.31329 -0.11783 3840.422 0.24902 -0.50886
AM 1844.872 1.494983 -0.29154 1663.136 2.942323 -0.14774 2026.607 0.047644 -0.44633
IM 2189.924 0.007403 -0.28278 3375.471 0.010941 -0.22743 1004.378 0.003866 -0.38233

DIM 1988.69 0.001638 -0.31682 3244.629 0.002744 -0.28341 732.7516 0.000532 -0.38793
Method 1 

SSE SSRPE MIS SSE  
Call 

SSRPE 
Call 

MISP 
Call 

SSE  
Put 

SSRPE 
Put 

MISP 
Put 

DOM 162.9669 18.3653 -0.29407 141.126 35.84651 -0.19327 184.8078 0.884094 -0.55881
OM 296.8426 42.01578 0.281002 349.5409 70.56175 0.374597 244.1443 13.46981 0.058412
AM 346.9351 972.9726 0.380268 395.2703 1164.24 0.547142 298.5998 781.7049 0.170706
IM 481.0347 0.00216 0.237822 484.915 0.002201 0.445035 477.1544 0.002119 0.013654

DIM 534.0856 0.000421 -0.05929 497.3995 0.000417 0.116536 570.7717 0.000425 -0.23939
Method 2 

SSE SSRPE MIS SSE  
Call 

SSRPE 
Call 

MISP 
Call 

SSE  
Put 

SSRPE 
Put 

MISP 
Put 

DOM 168.6209 11.10171 -0.36931 132.7025 21.63429 -0.24457 204.5394 0.569121 -0.66367
OM 260.8862 16.44184 0.112091 269.7659 29.35314 0.244414 252.0066 3.530529 -0.21347
AM 302.5933 390.867 0.113091 314.0793 478.0555 0.309581 291.1072 303.6786 -0.13808
IM 433.0772 0.001779 0.051547 423.3172 0.00181 0.241822 442.8373 0.001748 -0.14074

DIM 532.8754 0.000409 -0.13305 487.8545 0.000401 0.013539 577.8962 0.000418 -0.27858

Table 8. The three methods and moneyness. 

 

The SSE indicates that Methods 1 and 2 perform better than Derman and Kani’s in each class of 

moneyness. In terms of the SSE, Method 2 is better than Method 1 for each option class except for 

DOM options. The SSRPE in Methods 1 and 2 is lower than in Derman and Kani’s except for OM 

and AM options. The MISP indicates that the Derman and Kani method underprices most classes of 

options: the highest underpricing is observed for OM and DOM call and put options.  

As expected, Method 2 underprices every option class more than Method 1. Method 2 obtains a 

better pricing performance in terms of mispricing index for IM AM and OM options, the opposite 

holds for DIM and DOM options.  Method 2 is better than Method 1 in the pricing of Call options, 

while the opposite is true for Put options.  

In order to see how out-of-sample performance varies if a different number of levels (n) in the 

tree is used, the results for n equal to 50 and 51 are reported in Table 9 (we compute the average 

between odd and even levels performance). 
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SSE SSRPE MISP SSE  
Call 

SSRPE
Call 

MISP 
Call 

SSE 
Put 

SSRPE
Put 

MISP 
Put 

DK 3433,344 10,717408 -0,77354 3179,245 1,988628 -0,61759 3687,442 19,44619 -0,84928 
Method 1 359,4763 209,9826 -0,1559 377,7006 274,1591 0,107417 341,252 145,8061 -0,43878 
Method 2 343,7804 142,4489 -0,23541 352,8553 185,9835 0,068775 334,7054 98,91425 -0,53067 

Table 9. The out of sample performance for n equal to 50 and 51. 

 

Compared to n=25 and 26, the SSE is slightly lower for Methods 1 and 2, while it is higher for 

Derman and Kani, the SSRPE is lower for all three methods, and the MISP is lower only for 

Method 2. As for the mispricing index, it points at a worst pricing performance. Therefore, we can 

say that using more levels slightly improves the pricing performance of Methods 1 and 2, but does 

not improve the performance of the Derman and Kani method. Differently from the standard Cox, 

Ross and Rubinstein binomial model with constant volatility that improves the pricing performance 

as the number of levels tends to infinity, the Derman and Kani implied tree model, which uses 

different volatilities at each node, does not obtain better results if the number of levels is increased. 

Due to the presence of more parameters w.r.t. Derman and Kani’s, Methods 1 and 2 obtain a 

slightly better result.   

Given that in Methods 1 and 2 we have to estimate parameters α and β, we can now check how 

out-of-sample performance varies, by means of a different objective function for in-the-sample 

minimisation. Table 10 shows the results for the following function: 

∑
=








 −m

i M

MT

v f
fvf

1

2
)(min  .

SSE SSRPE MISP SSE  
Call 

SSRPE
Call 

MISP 
Call 

SSE 
Put 

SSRPE
Put 

MISP 
Put 

Method 1 373,9527 131,061 -0,08276 393,6426 165,9019 0,144531 354,2629 96,22009 -0,38126 

Method 2 384,5589 54,09393 -0,17903 385,4704 71,13082 0,075156 383,6474 37,05705 -0,46693 

Table 10. Out-of-sample performance using a different objective function in the sample. 

 

Compared with the results obtained by using the objective function in equation (5), the SSE is 

higher in both methods, while the SSRPE is slightly lower, as expected. As a matter of fact, the 

function that we minimise is the SSRPE multiplied by the number of options in the class. The 

overall performance of both methods is better than the one obtained by using the objective function 

in equation (5), but if we analyse each option class we see that in this case the MISP is higher in 
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absolute terms. We can conclude that changing the objective function to be minimised does not 

substantially change the out-of-sample performance of the two methods. 

 

7. CONCLUSIONS. 

 
In this paper we proposed an alternative way for the estimation of implied trees from 

observed option prices in markets where the put-call parity is not fulfilled. Implied trees that closely 

reflect the market price of standard European options are particularly useful in the pricing and 

hedging of exotic path-dependent options.  

We used the same procedure as in Muzzioli and Torricelli (2002) to imply the interval tree, the 

only difference being the endogenous derivation of the risk neutral probability interval. In order to 

compare theoretical prices with market prices, we parameterised the stock price at each node of the 

tree and we minimised the sum of squared errors, in order to extract a single implied tree. Two 

Methods have been compared with Derman and Kani’s in the DAX-index options market: Method 

1, based on a single parameter, and Method 2, based on two different parameters.  

The results of in-the-sample and out-of-sample performance are very similar. In both cases 

Method 2 obtains a slightly better performance than Method 1. It is characterised by a lower 

volatility than Method 1 and, as a consequence, it prices call options and around-the-money (IM, 

AM and OM) options better. The out-of-sample performance of Methods 1 and 2 does not 

substantially vary if we employ a different objective function to be minimised in the sample and if 

we increase the number of levels in the tree. 

 Overall, Methods 1 and 2, by capturing the different information carried by call and put prices, 

provide a better fit of the implied tree to market option prices than Derman and Kani’s. This better 

pricing performance can be attributed to a better fit of the lower part of the implied tree and a better 

pricing of long term and far-from-the-money options. 
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Appendix. The derivation of the risk-neutral probability interval. 

Let us briefly recall the assumptions of  Muzzioli and Torricelli (2002). Let r ≥ 0 be the 

continuously compounded risk free rate; X be the real line, representing a set of monetary values 

and let F be the set of all intervals of X, i.e. the set of closed bounded sets of real numbers: 

A1) )]j(i,S,j)(i,S[ F∈ is the stock price at time j in state i, where )j(i,Sj)(i,S ≤ ; as a special case, 

S(0,0) X∈ is the spot price at time zero and it is crisp (i.e. a collapsed interval). The bounds of the 

stock price interval at each node are determined by both call and put options. 

A2) No arbitrage opportunities are allowed:  

)1,1(),(),()1,( ++<⋅≤⋅<+ ∆∆ jiSejiSejiSjiS trtr ,

(see the corresponding values, in bold, in Figure 5). As we have interval values for the stock 

prices, this condition guarantees that if the interval collapses to a crisp value, the “standard” no 

arbitrage condition is fulfilled (i.e. )1,1()1(),()1,( ++<+⋅<+ jiSrjiSjiS , where 

XjiSjiSjiS ∈+++ )1,1(),,(),1,( ). 
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Figure 5. Three nodes of the tree with the co
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at time j, and at time j+1 is )]1,1(),1,1([)1,1(~
++++=++ jiSjiSjiS if it moves up, 

)]1,(),1,([)1,(~
++=+ jiSjiSjiS if it moves down. 

Let )(, Up ji be the artificial probability measure of an up move from node ),( ji to node 

)1,1( ++ ji and )(, Dp ji be the artificial probability measure of a down move from node ),( ji to 

node )1,( +ji .

We derive the set of risk neutral probability measures by means of the risk neutral argument, i.e. 

by solving the following system:                  

( )
( )





=+++++++

=+
∆−

∆∆∆−

)],(),,([)]1,(),1,()[()]1,1(),1,1()[(

1)()(

,,

,,

jiSjiSjiSjiSDpjiSjiSUpe

eDpeUpe

jiji
tr

tr
ji

tr
ji

tr

(6) 

where the first  and the second equation represents the risk neutral valuation of the money 

market account and of the stock respectively. 

By simplifying system (6) we get: 
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

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1)()(
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(7) 

In order to solve this system we resort to interval analysis and we use the solution method 

proposed in Buckley et al. (2002). Note that by the no arbitrage assumption A2) the determinant of 

system (7) is never zero. 

Buckley et al. (2002) propose to solve the corresponding crisp system: 
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by using Cramer’s rule to solve for each unknown: 
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and investigate the interval solution, )](),([ ,,
KpKp jiji

for { }DUK ,= as follows: 
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By noting that:  0
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Let { }DU ,=Ω be the sample space and { }Ω∅=Μ ,,, DU be an algebra of subsets of Ω , it is 

easy to check that )(
,

Kp
ji

and  )(, Kp ji are upper and lower probabilities, since they satisfy the 

following properties Μ∈∀ BA, :

1) 1)(0 ≤≤ Ap , 1)(0 ≤≤ Ap ,

2) ( ) 0 , ( ) 0, ( ) 1 , ( ) 1p p p p∅ = ∅ = Ω = Ω =

3) if BA⊆ then )()()()( BpApBpAp ≤≤  

4) 1)()( =+ CApAp

5) ∅=∩+≥∪ BABpApBAp ),()()(

6) ∅=∩+≤∪ BABpApBAp ),()()(

5’) )()()()( BpApBApBAp +≥∩+∪

6’) )()()()( BpApBApBAp +≤∩+∪ .
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