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Abstract 

 

A major issue in the construction of implied trees is the no arbitrage property 

preservation. Within the literature on deterministic smile-consistent trees using forward 

induction, two major contributions are: Derman and Kani (1994) and Barle and Cakici 

(1998). The former proposes a methodology to override the nodes that violate the no 

arbitrage condition. The latter extends the Derman and Kani’s algorithm, in order to 

increase its stability in the presence of high interest rates.  

The aim of the present paper is to modify the Derman and Kani’s methodology in order 

to improve the fit of the implied tree to option prices. The proposed methodology is 

compared with Barle and Cakici both in the sample and out of sample with Italian index 

options data. Overall findings support a better performance of the modified Derman and 

Kani’s methodology. 
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1. Introduction 

After the October 1987 crash, option markets exhibited implied volatilities that varied 

across different strikes (smile effect) and different times to expiration (term structure of 

the volatility), in contrast with the Black and Scholes assumption of constant volatility. 

In order to capture the implied volatility dependence on strike and time to maturity, 

different smile-consistent no-arbitrage models have been proposed in the literature, which 

can be classified either as deterministic or stochastic volatility models1. Deterministic 

volatility models (see e.g. Derman and Kani (1994), Barle and Cakici (1998), Rubinstein 

(1994), Jackwerth (1997), Dupire (1994)) derive endogenously from European option 

prices the instantaneous volatility as a deterministic function of the asset price and time. 

Stochastic volatility models (see e.g. Derman and Kani (1997), Britten-Jones and 

Neuberger (2000), Ledoit and Santa Clara (1998)) allow for a no-arbitrage evolution of 

the implied volatility surface. 

Deterministic volatility models have both theoretical and practical advantages: they 

preserve the no-arbitrage pricing property of the Black and Scholes model and are easily 

implementable. With the exception of Dupire (1994), which is developed in continuous 

time, most models are developed in discrete time. Among the latter, some (Derman and 

Kani (1994), Barle and Cakici (1998), Li (2001)) use forward induction in the derivation 

of the implied trees, others (Rubinstein (1994), Jackwerth (1997)), use backward 

induction2. The Rubinstein (1994) model is based on the assumption that different paths 

that lead to the same ending node have the same risk neutral probability, it captures only 

the smile effect and it is not useful for pricing path dependent options. The Jackwerth 

(1997) model, extend Rubinstein’s by allowing the implied tree to fit intermediate 

maturity options, thus capturing both the smile effect and the term structure of the 

volatility. The main advantages of deriving implied trees by forward induction is that only 

observable data are used and, in contrast to backward induction, no estimation of ending 

risk neutral probabilities is needed.  

A few papers empirically test the pricing performance of deterministic smile-consistent 

option pricing models (see among others, Dumas et al. (1998), Lim and Zhi (2002), 

Brandt and Wu (2002), Hull and Suo (2002), Linaras and Skiadopoulos (2005)), while, as 

underlined by Linaras and Skiadopoulos (2005), stochastic volatility smile-consistent 

                                                
1 See Bates (2003) for a survey on the approaches taken in option pricing and Skiadopoulos (2001) for a 
taxonomy and an extensive survey on smile-consistent no arbitrage models. 
2 This paper departs here from the terminology used by Skiadopoulos (2001) in that forward induction models 
are meant as those that use also forward induction and backward induction ones are those that use only backward 
induction.  
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models have not been tested yet, because of various computational limitations. The 

empirical tests compare different types of smile-consistent deterministic models w.r.t 

constant volatility models (such as Black and Scholes (1973), Cox-Ross-Rubinstein 

(1979)). The evidence on the pricing performance of deterministic smile-consistent 

models is mixed. Dumas et al. (1998) and Brandt and Wu (2002) find that they do not 

perform better than an ad hoc procedure that smoothes Black and Scholes (1973) implied 

volatilities across strikes and time to expiration. By contrast, Hull and Suo (2002) find that 

they are superior to Black and Scholes in the pricing of exotic options. In Lim and Zhi 

(2002) and Linaras and Skiadopoulos (2005), the pricing performance of different types of 

deterministic-smile consistent models is shown to strongly depend on various factors 

(option class chosen, moneyness and time to expiration). No apparent superiority of one 

specific model w.r.t. the others emerges. 

A major issue that negatively affects the pricing performance of implied trees based on 

forward induction is the occurrence of negative probabilities, which following  Linaras 

and Skiadopoulos (2005) can be addressed to as “bad probabilities”. Negative 

probabilities indicate the presence of  arbitrage opportunities. Derman and Kani (1994) 

propose a methodology to override the nodes that violate the no arbitrage condition. 

Nonetheless negative probabilities are frequently found, questioning the correct 

replication of the observed smile. Barle and Cakici (1998) extend the Derman and Kani’s 

algorithm, in order to increase its stability, in particular in the presence of high interest 

rates. Negative probabilities turn out less frequently, but in the presence of increasing 

interest rates and smile slopes, the fit to the smile is poor. In order to solve the problem, Li 

(2001) proposes to derive implied trees, by assuming constant nodal probabilities equal to 

0.5. However, the Li’s model strongly hinges on the assumption that the risk neutral 

measure exists. Moreover it is not appropriate for pricing path-dependent options, since all 

paths leading to the same node are equally likely (as in the Rubinstein’s model). 

In sum, focusing on deterministic volatility models based on forward induction, Derman 

and Kani (1994) remains comparatively the most suitable. In order to remove the problem 

of negative probabilities, the aim of this paper is to propose a modification of the no 

arbitrage test used to this purpose. The proposed methodology is a modified Derman and 

Kani model (MDK from now on) and will be compared with the Barle and Cakici (1998) 

implied tree, both in the sample and out of sample. The empirical validation of the 

different implied trees is performed by using a data set, Italian index options over the 
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period March 2000 - December 2003, which to our knowledge has not been yet used to 

the same purpose. 

This paper is organized as follows. Section 2 recalls the basics of the Derman and Kani 

implied tree and Section 3 briefly illustrates the Barle and Cakici extension. Section 4 

describes the methodology proposed in this paper in order to override nodes  that violate 

the no arbitrage condition. Section 5 describes the data set and the implementation. The 

last Section concludes. 

 

2. The Derman and Kani implied tree 

Derman and Kani (1994) (DK) construct an implied tree using forward induction. Let 

j=0,…,n be the number of levels of the tree, that are spaced by ∆t. As the tree recombines, 

i=1,...,j+1 is the number of nodes at level j. Forward induction is used to compute level j 

variables given level j-1 variables as inputs. The initial inputs are the riskless interest rate, the 

stock price at time zero and the smile function. The latter is used to determine the price of the 

appropriate ATM call and put prices. 

DK methodology assumes that the tree has been implied out to level j-1. Figure 1 focuses on 

levels j-1 and j. The known stock price Si,j-1, can evolve into Si+1,j in state up and Si,j, in state 

down. The risk neutral probability of an up jump is pi,j. The Arrow-Debreu price, λi,j, is 

computed by forward induction as the sum over all paths leading to node (i,j) of the product 

of the risk neutral probabilities discounted at the risk-free rate at each node in each path. 

 

[Figure 1 about here] 

 

The problem is how to imply nodes at level j. There are 2j+1 unknowns: j+1 stock prices (Si,j) 

and j risk neutral probabilities of an up move (pi,j) , (see Figure 1). Hence, 2j+1 equations are 

needed: the first 2j equations require the theoretical value of j forwards and j options expiring 

at time j to match their market values (for the upper part of the tree call options are used, 

while for the lower part of the tree, put options), the remaining degree of freedom is used to 

require the tree to develop around the current stock price (centring condition). The centring 

condition is given by equation (1) if the level is even and by equation (2) if the level is odd: 

0,01
2

SS j =
+

           (1) 

2
0,0

2
1

2
3 SSS jj =++

           (2) 

For the upper part of the tree the recursive equation to compute Si+1,j given Si,j is:  
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at time 0 of a call with strike Si,j-1 and maturity j. It is computed using a j step tree with 

constant volatility obtained from the smile function. 

In order to use equation (3), an initial node Si,j is needed. If the number of nodes is even, the 

central node is chosen to be equal to the current spot (equation (1)); if the number of nodes is 

odd, combining equations (2) and (3) yields the following equation: 
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For nodes in the lower part of the tree, a put with strike Si,j-1 instead of a call, is used. 

The recursive formula that provides Si,j given Si+1,j is obtained: 
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where ( )1,1,
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i

k
jk FSλ  and 1, −jiP  is the price at time 0 of a call with strike Si,j-1 

and maturity j. It is computed using a j step tree with constant volatility obtained from the 

smile function. By repeating this process at each level, the entire tree is generated (see Figure 

2). 

The artificial probabilities of each node must belong to ]0,1[ and  violation of this condition 

implies the presence of riskless arbitrage opportunities. In fact, if pi,j≥1 then Si+1,j ≤ Fi, if pi,j≤0 

then Si,j≥Fi. 

Thus, at each iteration, the following condition is tested: 

1,1,1, −−− << jijiji FSF           (6) 

Were this not verified, DK override the stock price Si,j as follows: 

)ln()ln()ln()ln( 1,11,,1, −−−− −=− jijijiji SSSS        (7) 

Condition (7) keeps the logarithmic spacing of stock prices in nodes i and i-1 at level j, the 

same as in the corresponding nodes at the previous level j-1.  

 

[Figure 2 about here] 

 



 6 

3. The Barle and Cakici modification 

Barle and Cakici (1998) (BC) note that the DK model fails to accurately reproduce the smile, 

because negative transition probabilities are frequently found. In order to ensure that the 

artificial probabilities remain in the interval ]0,1[, they propose three major modifications, 

which are essentially based on the use of the forward price. First, they do not fix the centre of 

the tree equal to today stock price, but they let it evolve at the risk free rate. Second, they 

choose the options’ strike equal to the forward Fi,j.  Third, if a stock price violates the no-

arbitrage condition, they choose to override it  by setting: 

2
1,1,1

,
−−− +

= jiji
ji

FF
S           (8) 

Even though BC modifications do help in avoiding negative transition probabilities, in the 

presence of increasing interest rates and smile slope, BC model still fails to accurately 

reproduce the smile.  

  

4. The modified Derman and Kani 

This section illustrates the modifications to the Derman and Kani methodology proposed in 

this paper in order to avoid arbitrage opportunities.  

As stressed by BC, equation (7) does not guarantee that the stock price satisfies the no-

arbitrage condition (6). Therefore DK method allow negative probabilities and hence results 

in a poor replication of traded option prices. The BC solution to the problem is to take the 

average of forward values Fi-1,j-1 and Fi,j-1 (equation (8)). 

However, equation (8), which rules out arbitrage opportunities in BC model since the centre 

of the tree increases at the risk free rate, does not eliminate arbitrage opportunities in the DK 

model, where the centre of the tree is constrained to remain equal to the initial stock price. 

The no-arbitrage test in the DK model, that is based on the comparison of node at level j (Si,j) 

with the nodes at level j-1 (Si-1,j-1 and Si,j-1)), has to be integrated by a condition that takes into 

account the relation of the forward value of the newly determined stock price Si,j, with respect 

to the center of the tree at level j+1, that is fixed and known in advance.  

In order to investigate which is the condition to be fulfilled by the newly determined stock 

price, it is necessary to distinguish different cases (see Figure 3) depending on both: 

a) nodes being in the upper (yellow nodes) or lower (red nodes) part of the tree or on the 

boundary (blue nodes on the upper boundary and orange nodes on the lower 

boundary) 

b) the relation between the dividend yield, δ , and the risk-free rate, r. 
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The following Subection investigates the nodes in the upper part of the tree, Subsection 4.2 

the nodes in the lower part and Subsection 4.3 the nodes on the boundary. 

 

[Figure 3 about here] 

 

4.1 Nodes in the upper part. 

Figure 4 illustrates four nodes, Si,j, where  i=1,...n+1 indicate the node and j=0,..,n the level of 

the tree, along with the forward values Fi,j in the case δ>r . In this case Fi,j is strictly bigger 

than Si,j for each i=1,...n+1, j=0,..,n. In particular, for node Si,j the forward Fi,j is bigger than 

S0,0, that is fixed and the no arbitrage relation that Si,j has to fulfil is: 

  1,
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tr
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i.e. Si,j must lie between the forward values of Si-1,j-1 and Si,j-1.  

If Si,j violates the no-arbitrage condition, equation (8) is used in order to impose a value for 

Si,j, consistent to the no-arbitrage condition. 

The same happens if δ=r , as illustrated in Figure 5. 

 

 

[Figures 4, 5 and 6 about here] 

 

Figure 6 illustrates the case δ<r . In this case the forward  Fi,j, being lower than Si,j, can also 

be lower than Si,j+1=S0,0, causing a no-arbitrage violation. Therefore, the no-arbitrage 

condition (6) has to be restricted as follows: 
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If node Si,j violates the no-arbitrage condition (10), it is determined by means of the 

following: 

2
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Condition (10) obviously guarantees no-arbitrage opportunities when Si-1,j-1=S0,0, since 

Si,j+1=Si-1,j-1=S0,0. In the general case, Si,j is any node in the upper part of the tree (not 

necessarily the one above the center) e.g., node Si,j-1. In order to have no arbitrage 

opportunities, since ji
tr

jiji SeSF ,
)(

1,1, >= ∆−
−−

δ  and 0,0
)(

,, SeSF tr
jiji >= ∆−δ , it is necessary that 

tr
ji eSS ∆−
− > )(2

0,01, / δ .  
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The first inequality of the no arbitrage condition (10) requires tr
jiji eSS ∆∂−
−−− > )(

2,11, / , since 

tr
ji eSS ∆∂−
−− > )(

0,02,1 / , then tr
ji eSS ∆−
− > )(2

0,01, / δ .  

 

4.2 Nodes in the lower part of the tree 

Figure 7 illustrate the nodes in the lower part of the tree when δ>r . This case mirrors the 

case for nodes in the upper part of the tree when δ<r .  

 

[Figure 7 about here] 

 

In this case, in order to avoid arbitrage opportunities, tr
jiji eSF ∆−= )(

,,
δ , the forward value of 

jiS , , is constrained to be less than 0,0S , that is fixed. 

This implies, in turn, the same condition for all the other nodes in the lower part of the tree, 

e.g., 1,1 −− jiS , should be less than treS ∆− )(2
0,0 / δ  since ji

tr
jiji SeSF ,

)(
1,11,1 <= ∆−

−−−−
δ  and 

0,0
)(

,, SeSF tr
jiji <= ∆−δ . By the same argument, tr

ji eSS ∆−
−− < )(3

0,02,2 / δ .  

Therefore, in order to avoid arbitrage opportunities it is necessary for Si,j to satisfy the 

following no-arbitrage condition : 
tr

jiji
tr

jiji eSSeSF ∆−
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If Si,j violates the no-arbitrage condition, it is obtained by the following: 

2
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Condition (11) guarantees no-arbitrage opportunities: e.g. for node 1,1 −− jiS , the last inequality 

of the no arbitrage condition (11) requires: tr
jiji eSS ∆∂−
−−−− < )(

2,11,1 / , since 

tr
ji eSS ∆∂−
−− < )(

0,02,1 /  then tr
ji eSS ∆−
−− < )(2

0,01,1 / δ . 

If δ≤r  (Figures 8 and 9) then Fi,j is less than or equal to Si,j for each i=1,...n+1, j=0,..,n. 

Therefore the forward  Fi,j is also less than or equal to S0,0, that is fixed and the no arbitrage 

relation (9) is still valid. If Si,j violates the no-arbitrage condition, equation (8) is used in order 

to substitute it. 

[Figures 8 and 9 about here] 
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4.3 Nodes at the boundary of the tree. 

In order to introduce a no arbitrage test for the nodes at the boundary of the tree, nodes in the 

upper part have to be examined separately form nodes in the lower part of the tree. For nodes 

in the upper part, the no-arbitrage condition is: 
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Figure 10 illustrates the case δ<r . 

If a node violates condition (12), it is obtained by: 
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[Figures 10 and 11 about here] 

 

For nodes in the lower part, the no-arbitrage condition is: 
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Figure 11 illustrates the case δ>r . 

If a node violates condition (14) it is obtained by: 
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5. An application 

In this section the modified Derman and Kani (MDK) and the BC implied trees are 

implemented both in the sample and out of sample, by using the MIB30 index options data set 

covering the period March 2000 - December 2003. 

 

5.1 The data set 

The data set consists of closing prices of Mib30-index options, with maturities up to one 

year, recorded from 20 March 2000 to 19 December 2003. The option contracts on the Mib30 

index (MibO) were introduced in the Italian Derivatives Market (IDEM) in November 1995. 

Mib30 index options are European options on the Mib30 index, which is a capital weighted 
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index composed of 30 major stocks quoted on the Italian market. It is adjusted for stocks 

splits, changes in capital and for extraordinary dividends, but not for ordinary dividends3.  

Mib30 options quoted in index points, representing a value of 2.5 €, with six different 

expirations (four quarterly -March, June, September and December- and two monthly -the 

nearest two months). The last trading day is the third Friday of the expiry month.  

The underlying is the Mib30-index recorded in the same time period. As the Mib30 is not 

adjusted for dividends, the daily dividend yield, that is available in Bloomberg, is used in 

order to compute the appropriate value for the index, as follows: 
t

ttt
teSS ∆−

∆+ = δ
 

where St is the Mib30 value at time t, δt is the dividend yield and ∆t is the time increment.  

As a proxy for the risk-free rate the Euribor rates with maturities up to one year are used. 

Yields to maturity are computed by linear interpolation. The whole data-set source is 

Bloomberg.  

Two different filters are applied to the data set. First, options with less than two days and 

more than one year to maturity are excluded. Second, trading dates with less than 11 options 

traded are left out. 

 

5.2 The methodology 

The methodology develops into three steps: first a smile function has to be estimated, 

second, the two implied trees, the MDK and the BC are derived, third the two methods are 

compared both in the sample and out of sample. 

In order to estimate the smile function, a linear function of the form: 

σ(X) = a0 + a1 X 

is used, where the Black and Scholes implied volatilities are computed by using the 

bisection method in C++. The function σ depend only on the strike price of the option, 

therefore, in order to estimate4 the parameters options are grouped in classes with the same 

trading day and time to maturity. 

As the choice of the number (odd or even) of the binomial tree levels implies different 

estimates of the price, the prices are computed as the average between odd and even levels. A 

binomial tree with 25 and 26 levels is assumed (as e.g. in Barle and Cakici (1998)). 

 The MDK implied tree is derived following the procedure illustrated in Derman and Kani 
                                                
3 As from September 2004, the derivatives on the S&P/Mib index have been replacing those on the Mib30 index 
on the Italian Derivatives Market (IDEM). However, the features of the options on the S&P/Mib are very similar 
to those on the Mib30. For more details see www.borsaitalia.it  
4 The parameters are estimated each day by solving a least square problem implemented in GAMS ver. 20.7, 
using the solver MINOS 5.4. 

http://www.borsaitalia.it


 11 

(1994), with the only exception that the no arbitrage condition detailed in Section 4 is used to 

exclude arbitrage violations. The BC implied tree is derived following the procedure detailed 

in Barle and Cakici (1998).  

The two methods are compared both in and out of sample. In the sample, the binomial tree 

is implied from option prices (following the DK or BC methodology) and the same set of 

options is priced on the tree. Out of sample, date t+1 theoretical prices are computed on date t 

implied trees and compared with t+1 market prices.  

In order to gauge the pricing performance of the two methods three indicators that are 

computed on each day for each option class and then averaged across the sample are used: the 

mean squared error (MSE), the mean squared relative error (MSRE) and the index of 

mispricing (MISP); they are respectively defined as follows: 
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T
iP and M

iP are respectively the theoretical and the market price of option i , i = 1, …, m 

and m is the number of options in the class. 

The MSE is an indicator of the implied tree fit to option prices, it naturally increases with the 

moneyness of the option. The MSRE is a percentage error and is usually higher for out of the 

money options. The mispricing index ranges from –1 to 1 and indicates, on average, the 

overpricing (positive MISP) or underpricing (negative MISP) induced by the method. 

In order to detect which options classes are best priced by each model, options are divided 

according to their moneyness. Five classes, according to the indicator of moneyness M = 

S/(Ke–rT), where S is the underlying value and K  the strike price of the option, are 

individuated (DOM (deep-out-of-the-money, call options: M < 0.9 and put options: M > 1.1), 

OM (out-of-the-money, call options: 0.9 ≤ M < 0.98 and put options: 1.02 < M ≤ 1.1), AM 

(at-the-money, call and put options: 0.98 ≤ M ≤ 1.02), IM (in-the-money, call options: 1.02 < 

M ≤ 1.1 and put options 0.9 ≤ M < 0.98), DIM (deep-in-the-money, call options: M > 1.1 and 

put options: M < 0.9)).  
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5.3 An empirical comparison 

Table 1 reports the in the sample performance. The MDK performs better than the BC 

implied tree according to all the indicators. They both underprice on average, but the 

underpricing of the MDK is substantially lower. In particular, the better performance of the 

MDK can be attributed to the better pricing of put options. Table 2 shows the performance 

with respect to moneyness. The better performance of the MDK can be attributed to the better 

pricing of deep out of the money and out of the money options. In particular, deep out of the 

money put are the best priced by the MDK.  

Table 3 reports the out of sample performance, which, according to the MSE and the 

MSRE is for both models worse than the in the sample one, the only exception being the 

MISP index. Overall, the three indicators jointly point to a better pricing performance of the 

MDK w.r.t. the BC. Similarly to the in the sample analysis, the better performance is mainly 

due to a better pricing of put options. Table 4 shows the performance with respect to 

moneyness and results confirm the better pricing performance of the MDK as for out of the 

money put options. 

Table 5 illustrates the number of no arbitrage violations detected, that required a 

replacement of the stock price. The minimum and the maximum number of replacements is 

higher for the MDK, because the model implies a test for no arbitrage also at the boundary 

nodes (not present in the BC). But according to the total and average number of replacements, 

the MDK implied tree is superior, in that it encounters a fewer arbitrage violations. Therefore 

the MDK better fits the smile and this turns out in a better pricing performance. 

 

6. Conclusions 

This paper has proposed a modification of the Derman and Kani no-arbitrage test in order 

to improve the fit to option prices. The no arbitrage condition has been examined by including 

dividends into the picture. In order to improve the fit to deep out of the money options, a no-

arbitrage test for the nodes at the boundary of the tree has been introduced. The modified 

Derman and Kani and the Barle and Cakici implied trees have been compared, both in the 

sample and out of sample by using the MIB30 index options data set covering the period 

March 2000 - December 2003. 

The empirical results suggest that the modified Derman and Kani performs better than the 

Barle and Cakici, both in the sample and out of sample. In particular, the better performance 

of the modified Derman and Kani can be attributed to the better pricing of out of the money 
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put options, i.e. a better fit in the lower part of the tree. The better fit can be also explained by 

a lower number of no arbitrage violations for the modified Derman and Kani. This results in a 

lower number of stock price replacements and therefore in a better fit to traded option prices. 
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 MSE MSRE MISP MSE 

Call 
MSRE 
Call 

MISP 
Call 

MSE 
Put 

MSRE 
Put 

MISP 
Put 

BC 66990.09 0.251537 -0.15105 67867.52 0.211266 -0.21894 66112.67 0.291807 -0.14986 

MDK 62471.18 0.153191 -0.10046 67982.50 0.160461 -0.15916 56959.86 0.14592 -0.13433 

Table 1- In the sample pricing performance of Barle and Cakici (BC) and modified 

Derman and Kani (MDK)  

 
 MSE MSRE MISP MSE 

Call 
MSRE 

Call 
MISP Call MSE 

Put 
MSRE 

Put 
MISP  

Put 
Panel A: Barle and Cakici 

DOM 35642.76 0.3037854 -0.470175 28075.04 0.359441 -0.48799 43210.48 0.24813 -0.443005 

OM 22203.76 0.7359008 0.3222684 19131.57 0.4473269 0.3928 25275.94 1.024475 0.2389769 

AM 53518.95 0.1756063 0.325635 44915.07 0.0897105 0.37256 62122.82 0.261502 0.2758833 

IM 88252.18 0.0119939 0.1733406 69241.42 0.0116981 0.17496 107262.94 0.01229 0.1716602 

DIM 104571.75 0.043355 -0.149994 111912.04 0.0533579 -0.48673 97231.47 0.033352 0.2879822 

Panel B: Modified Derman and Kani 

DOM 16004.08 0.292285 -0.42987 27824.8 0.331302 -0.43979 4183.35 0.253268 -0.41572 

OM 22358.19 0.289524 0.364623 19781.66 0.215145 0.452649 24934.72 0.363904 0.2472 

AM 53184.01 0.047235 0.347771 46471.31 0.056083 0.402992 59896.7 0.038388 0.286506 

IM 87808.08 0.012079 0.179577 70198.48 0.011748 0.182918 105417.7 0.012411 0.176097 

DIM 102876.3 0.04533 -0.13928 111327.2 0.055987 -0.47762 94425.33 0.034674 0.300215 

 Table 2- In the sample pricing performance w.r.t. moneyness classes 

 
 MSE MSRE MISP MSE 

Call 
MSRE 
Call 

MISP 
Call 

MSE 
Put 

MSRE 
Put 

MISP 
Put 

BC 86541.08 0.85473 -0.0911 91956.33 0.368451 -0.1307 81125.83 1.341015 -0.1029 

MDK 81413.18 0.814915 -0.0416 90898.25 0.304321 -0.07193 71928.11 1.325508 -0.0851 

Table 3- Out of sample pricing performance of Barle and Cakici (BC) and modified 

Derman and Kani (MDK) 

 
 MSE MSRE MISP MSE 

Call 
MSRE 
Call 

MISP  
Call 

MSE 
Put 

MSRE 
Put 

MISP  
Put 

Panel A: Barle and Cakici 

DOM 57515.20 2.062914 -0.37318 53023.47 1.2007393 -0.403661 62006.93 2.9250891 -0.33661 

OM 55526.54 0.645279 0.30333 62072.65 0.523179 0.3784889 48980.44 0.7673798 0.206086 

AM 82273.18 0.334826 0.329003 82202.22 0.1023297 0.3916961 82344.13 0.5673231 0.260514 

IM 107891.83 0.01353 0.18001 95436.59 0.0136097 0.1881692 120347.07 0.0134498 0.17108 

DIM 112659.27 0.049648 -0.14624 121991.44 0.0601006 -0.479763 103327.11 0.0391963 0.296142 

Panel B: Modified Derman and Kani 

DOM 36908.97 2.18845 -0.33172 52359.08 1.156266 -0.34492 21458.86 3.220633 -0.31668 

OM 55305.11 0.37555 0.334418 62191.81 0.334923 0.418155 48418.42 0.416176 0.217824 

AM 81713.41 0.05317 0.353098 83196.65 0.062505 0.415864 80230.17 0.043835 0.280123 

IM 107189.6 0.013712 0.186893 95389.55 0.013662 0.195527 118989.7 0.013761 0.177404 

DIM 110847.8 0.053293 -0.1349 119228.4 0.063996 -0.47384 102467.2 0.042589 0.307908 

Table 4- Out of sample pricing performance w.r.t. moneyness classes 
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 BC MDK  

mean 57.56056 47.60131 
min 0 15 
max 239 287 
tot. 257123 204162 

Table 5- No arbitrage violations for Barle and Cakici (BC) and modified Derman and 

Kani (MDK) 

 

 

 

 

 

  Level j-1      Level j 

 

    ………………………………… 

 

 
………………………………………… 

 

 

Sj+1,j 
Sj,j-1 

Sj,j 

S1,j 

S2,j 

Sj-1,j 

S2,j-1 S3,j 

Si,j-1 

Si,j 

Si+1,j 

Sj-1,j-1 

S1,j-1 

λi,j-1 

λi,j 

λi+1,j 
pi,j 

Fi,j-1 

Figure 1. Levels j-1 and j of the tree. 
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Figure 2. The equations in the Derman and Kani tree. 
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Figure 3. The no-arbitrage replacements. 

 
Figure 4. Four nodes of the implied tree in the upper part if δ>r . 

 

 

 
Figure 5. Four nodes of the implied tree in the upper part if δ=r . 

 

 

 
Figure 6. Five nodes of the implied tree in the upper part if δ<r . 

 

 

Fi,j-1 

Fi-1,j-1 

Fi,j Si,j 
Si,j+1=S0,0 

Si,j-1 

Si-1,j-1=S0,0 

Fi-1,j-2 

Fi,j-1 

Fi-1,j-1 

Fi,j Si,j 
Si,j+1=S0,0 

Si,j-1 

Si-1,j-1=S0,0 

Si,j 

Si,j-1 

Si-1,j-1=S0,0 

Fi,j-1 

Fi-1,j-1 Si,j+1=S0,0 

Fi,j 

Si-1,j-2 



 19 

 
Figure 7. Four nodes of the implied tree in the lower part if δ>r . 

 

 

 
Figure 8. Four nodes of the implied tree in the lower part if δ<r . 

 

 

 
Figure 9. Four nodes of the implied tree in the lower part if δ=r . 
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Figure 10. Three nodes of the implied tree in the upper part at the boundary of the tree  if 

δ<r . 

 

 

 

 
Figure 11. Three nodes of the implied tree in the lower part at the boundary of the tree  if 

δ>r . 
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