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Abstract

Do hours worked rise or fall after a positive technology shock? According to the existing evidence it de-

pends on whether they enter the VAR in levels (hours rise) or growth rates (hours fall). We argue that

conflicting results may ultimately arise because important structural time variations are a priori ruled out

by empirical models. We identify technology shocks as the only shocks driving long-run labor productivity

in a Time-Varying Coefficients Bayesian Vector Autoregressions (TVC-BVAR) estimated using postwar

US quarterly data. We find that (i) under both (levels and growth rates) specifications hours fall, and (ii)

technology shocks explain about 11-25% of total aggregate fluctuations giving rise to positive but small

correlations between output and hours. Differences with respect to fixed coefficients VAR are due to in-

stabilities in the relationship between labor productivity and the levels of hours worked.
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1 Introduction

The short-run dynamics of hours worked following a positive technology shock have an essential

role in assessing competing theories of the business cycle. Standard versions of Real Business

Cycle (RBC) models (see e.g. Prescott, 1986) predict that hours must increase: an improvement

in technology raises marginal productivity of labor and the labor demand which, with an upward

sloping supply, implies a rise in hours worked1. On the other hand, other theories of the business

cycle, like models embodying nominal rigidities (see e.g. Gali, 1999) or RBC models with habits

formation and capital adjustment cost (see e.g. Francis and Ramey, 2003) predict that hours

fall. The sign of the response of hours has very important implications for the role of technology

shocks in explaining aggregate fluctuations. Actually a shock that fails in generating a strong

positive correlation between output and hours can hardly be considered one of the main forces

driving business cycles.

In recent years an interesting and intense debate on whether, in the data, hours rise or fall

after a positive technology shock has emerged. Implicitly, the contention is whether the standard

RBC paradigm can correctly describe the business cycle and whether technology shocks can be

considered important sources of economic fluctuations. Gali (1999), using reduced form vector

autoregressions augmented with the restriction that technology shock is the only shock driving

long-run labor productivity, finds that hours fall. Moreover technology shocks can account just for

a very small part of total fluctuations in output and hours worked at the business cycles frequen-

cies. The author interprets all this as compelling evidence against the RBC paradigm. Similar

conclusions are reached, through different approaches, by Basu Fernald and Kimball (2004), Fran-

cis and Ramey (2003) and Francis, Owyang and Theodorou (2003), Pesavento and Rossi, (2004)

and Shea (1998). The reaction to this growing consensus came soon. Christiano Eichenbaum and

Vigfusson (2004) (CEV henceforth), using a similar reduced form vector autoregressions repre-

sentation and the same identifying restriction, replicate the exercise by Gali (1999) and they find

the opposite result: as predicted by standard RBC models, hours persistently rise2 Evidence in

line with the CEV conclusions is provided in the works by Dedola and Neri (2004), Fisher (2005),

Peersman and Straub (2003, 2005) and Uhlig (2001).
1Under standard calibrations, such a mechanism arise no matter when the technology shock is modeled as a

persistent stationary AR or a random walk.
2Chari Kehoe and McGrattan (2005) call into question the VAR approach as a useful guide to assess the relevance

of theoretical models. They show, using simulated data, that VAR analysis would imply a fall of hours when the

underlying theoretical model predicts a positive response after a technology shock. However Christiano Eichenbaum

and Vigfusson (2005) show that the Chari Kehoe and McGrattan model is a case of little empirical relevance since

it is strongly rejected by the data. On the contrary when models with higher posterior support are employed, VAR

predict the right responses. Similar findings emerge in the works by Erceg, Guerrieri and Gust (2004) and Francis,

Owyang and Roush (2005).
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Why are the results of Gali and CEV so different? The reason is in the different specification

for the time series of hours worked used in the VAR. Gali, arguing that hours are difference

stationary, uses growth rates3. On the contrary CEV, justifying their choice with an encompassing

argument, specify hours in levels. The whole debate is nowadays at a standstill because of such

a specification controversy4: the response of hours to a positive technology shock depends on

whether they are specified in levels (hours rise) or growth rates (hours fall). Consequently much

effort has been spent in trying to justify from a statistical and economic point of view each of

the two specifications. CEV show that the levels specification can easily explain the growth rates

specification while the converse is not true. On the other hand Gali (2005) provides empirical and

theoretical evidence in favor of the nonstationarity of hours worked across industrialized countries.

This paper contributes to the debate from a completely different perspective. We investigate

the effects of technology shocks on hours worked in the US using Bayesian Vector Autoregres-

sions with drifting coefficients, thus allowing for general forms of time variations and structural

changes. The basic idea of the paper comes from the simple consideration that despite the differ-

ent treatment of hours worked, all empirical models used in previous contributions stand on the

assumption that model coefficients are constant over time. Although standard in VAR literature,

such an assumption seems to be very strong when the analysis is run over a sample of fifty years

and mainly when variables describing the labor market are included. Actually important changes

in labor market trends, like changes in the composition of hours worked or participation rates, and

in the US economy in general, like changes in the central bank anti-inflationary preferences5 or

changes in labor productivity trends6, have been extensively documented in literature. Moreover

these changes seem to be relevant for the transmission mechanisms of technology shocks since in

many works (see Gali, Lopez-Salido and Valles 2003, GLV henceforth, CEV, Fisher 2005, and

Fernald 2005) it clearly emerges that results are highly sensitive to the sample or subsamples

considered in the analysis. In this paper we argue that conflicting results may ultimately arise

simply because some of these changes are a priori ruled out by previous empirical models. Specif-

ically, differences in the results that are apparently due to a different treatment of hours worked

may simply originate from a more fundamental misspecification arising from the too strong as-

sumption of model coefficients constancy. Actually we show that once one allows for changes in

the US economy whether hours should be specified in levels or growth rate becomes of secondary

importance since competing specifications yield the same answer: at least until mid 90’s hours
3The same results emerge when hours are detrended using quadratic trends.
4See Whelan (2004) for a detailed review and a study of the robustness of the results to alternative specifications.
5See among others Boivin and Giannoni (2002a, 2002b), Clarida, Gali and Gertler, (2000), Cogley and Sargent,

(2001, 2003) documenting a change in the response of monetary authorities to inflation after 1979.
6See Brainard and Perry, (2001), Kahn and Rich, (2003) and Roberts, (2000) documenting that two big changes

in labor productivity took place in early 70’s and again during the mid 90’s.
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persistently fall.

This paper addresses the following questions. What are the effects of technology shocks on

hours worked and what is the importance of technology shocks in explaining aggregate fluctuations

when time variations are accounted for? Can we reach robust conclusions by allowing for time

variations in the US economy? To address these questions we augment the reduced form model,

which is almost identical to the one originally proposed by Cogley and Sargent (2001), with the

same restriction as in Gali (1999) and CEV that technology shocks are the only shocks driving

labor productivity in the long-run and we use both specifications for hours worked, levels and

growth rates. Given that the specification is identical to the one used in literature, our analysis

can concentrate on differences directly attributable to coefficients time variations. To conduct

dynamic analysis we use conditional impulse response functions, that is we condition on all out-

of-sample coefficients being equal to the end-of-sample coefficients. This is motivated, on the one

hand, by the fact this is the best forecast whenever coefficients evolve according to a random walk.

On the other hand, under such a definition, impulse response functions display useful long-run

properties. The model is estimated using Bayesian MCMC methods: we use the Gibbs sampling

algorithm augmented with a rejection sampling to generate draws from the posterior distributions

of the objects of interest. We check the robustness of the results to alternative end-of-sample dates

and alternative identification schemes and eventually we extend the model in order to consider

also investment-specific technology shocks.

Our main findings can be summarized as follows. (i) Hours fall under both specifications, levels

and first differences. (ii) The impact effect is more pronounced and significantly different from

zero only before 1990. For the level specification also the degree of persistency of the response

substantially reduces over-time. (iii) Differences with respect to fixed coefficients VAR are due

to instabilities in the relationship between labor productivity and the levels of hours worked.

(iv) Technology shocks generate positive but small correlations between output and hours at the

business cycles frequencies and the portion of output variance explained by technology shocks

over the business cycles is about 11-25%. When, in addition to aggregate sector-neutral shocks,

also investment-specific technology shocks are considered the percentages relative to technology

shocks as a whole raise up to 39-53%. (v) Results are robust to alternative identifying restrictions.

(vi) The response of monetary policy to technology shocks has changed over time but this does

not seem to affect the response of hours worked.

The paper is organized as follows: section 2 revisits the evidence from fixed coefficients VARs;

section 3 describes the empirical model; section 4 discusses main results; section 5 explains the

differences between time-varying and fixed coefficients VARs; section 6 provides some structural

interpretations of the results; section 7 assesses the robustness of the results to various alternatives;

section 8 concludes.
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2 Revisiting the Evidence from Fixed Coefficients SVARs

Let yt be a n × 1 vector of time series with the following VAR representation

A(L)yt = εt (1)

where L is the lag operator, A(L) = I − A1L − A2L
2 − ... − ApL

p, Ai are n × n matrices of

coefficients and εt is a n×1 Gaussian white noise process with zero mean and covariance Σ. If the

roots of A(L) in modulus are outside the unit circle, yt admits the following MA representation

of infinite order

yt = B(L)εt (2)

where B(L) = A(L)−1. Let S be the unique lower triangular matrix such that SS′ = B(1)ΣB(1)′

where B(1) = I + B1 + B2 + ... and let K = B(1)−1S. We can rewrite (2) in terms of orthogonal

shocks

yt = C(L)et

where et = K−1ε and C(L) = B(L)K. If labor productivity growth is ordered first in the vector

yt, then the first shock, e1t, is the technology shock identified by the restriction that is the only

shock affecting long-run productivity.

Figure 1 plots the impulse response functions of per capita hours to a technology shock from

a bivariate VAR with labor productivity growth and hours worked. Top and bottom panels refer

to the specification with hours in first differences and levels respectively. When specified in first

differences, hours persistently and significantly decline. On the contrary, in levels, the response

is positive, significant and hump-shaped, reaching its maximum after two years after the shock.

Here the terms of the controversy clearly emerge: when hours are specified in growth rates they

persistently decline while in levels they persistently increase.

To motivate our interest in time variations let us consider what happens when we repeat the

analysis for the subsamples considered in GLV and Fisher (2005), 1954:III-1979:IV and 1982:III-

2003:IV, and corresponding to the presumed breaks in the monetary policy conduct. Instabilities

are evident for the levels specification (Figure 2): in the second subsample the response is positive

while in the first it becomes negative. On the other hand, in growth rates, results appear to be

more robust since in both subsamples hours reduce. The lack of robustness of results is not limited

to the two subsamples considered above. For instance Fernald (2005) shows that if one takes into

account potential shifts in trend productivity, specifically the slow-down in 1973 and pick-up in

mid 90’s hours worked fall for both specifications in all the subsamples. Perhaps the most striking

result is that if the analysis had been done ten years before the paper by CEV, say at the very

beginning of the 90’s, no debate would have emerged. Actually if we exclude from the analysis

the last ten years (1994-2003), hours fall under both specifications. All these findings are hard to
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explain unless we admit the possibility that when we use the whole sample we are mixing periods

in which the structural features characterizing the US economy are different. This, we believe,

strongly suggests that the link between structural changes and the propagation mechanisms of

technology shocks and the way the formers may have influenced the seconds deserves further

investigations.

3 The Empirical Model

We use a Bayesian Vector Autoregression where the coefficients are allowed to smoothly drift

over-time to describe the evolution of the US economy. Several reasons drive our choice. First,

time variations and structural changes may be important. Second, there can be various features

of the US economy that have changed and they should be considered simultaneously rather than

separately. Third, we believe that changes in macroeconomic relationships suggest more evolution

rather than sudden breaks7. Fourth, our model represents a generalization of fixed coefficients

VAR and includes this as a special case.

3.1 VAR Representation

Let yt be a n×1 vector of time series which admits the following reduced form VAR representation

yt = A0,t + A1,tyt−1 + A2,tyt−2 + ... + Ap,tyt−p + εt (3)

where A0,t is an n × 1 vector of time-varying intercepts, Ai,t, for i = 1, ..., p, are n × n matrices

of time-varying coefficients8 and εt is a n × 1 Gaussian white noise process with zero mean and

covariance Σ. Let Kt be any, possibly time varying, nonsingular matrix such that KtK
′
t = Σ.

Rewriting the model in terms of orthogonal shocks we have

yt = A0,t + A1,tyt−1 + A2,tyt−2 + ... + Ap,tyt−p + Ktet (4)

where et = K−1
t εt is a Gaussian white noise process with zero mean and covariance the identity

matrix In. Equation (4) represents the class of structural representations of the vector of time

series and each particular matrix Kt defines a particular representation of yt.

3.2 Dynamics

Model dynamics are summarized in the mechanisms through which shocks spread over time.

Impulse response functions measure the effects of a shock on future time series relative to some
7We do not claim that breaks from period to period are unlikely to occur but rather we argue that most of

macroeconomic changes, in particular those related to the labor market, take place in a gradual way.
8The fixed coefficients VAR is a special case of the model in which Ai,t = Ai for all i and t.
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benchmark case. Equation (3) has the following companion form

yt = µt + Atyt−1 + εt

where yt = [y′t...y′t−p+1]
′, εt = [ε′t0...0]′ and µt = [A′

0,t0...0]
′ are np × 1 vectors and

At =

(
At

In(p−1) 0n(p−1),n

)

where At = [A1,t...Ap,t] is an n× np matrix, In(p−1) is an n(p− 1) × n(p− 1) identity matrix and

0n(p−1),n is a n(p− 1) × n matrix of zeros. Iterating k period forward and omitting for simplicity

the constant term, we obtain

yt+k = At+k...Atyt−1 + At+k...At+1εt + At+k...At+2εt+1 + ... + At+kεt+k−1 + εt+k

Let Si,j(M) be a selection function, a function which selects the first i rows and j columns of

the matrix M . Taking as a benchmark case the case of no-shock occurrence, and assuming that

coefficients and shocks εt are uncorrelated, the matrix of dynamic multiplier Sn,n(At+k...At+1)

describes the effects of εt on yt+k, while the effects associated to structural shocks can be derived

from the relation εt = Ktet and are given by Sn,n(At+k...At+1)Kt. Few important features of the

impulse response functions in our setup need to be highlighted. First, the effects of the shocks

depend on future coefficients: unlike in the fixed coefficients case, here propagation mechanisms

are subject to future changes in the structure of the economy. Second, the effects of a shock

for the same k but different t may vary over time, both because at each time period we can

associate a particular reduced form dynamic multiplier, and because the identifying matrix, Kt,

may change over time. Third, data provide information about model dynamics up to the end

of the sample date, T , because posterior information is available only for VAR coefficients up

to that date. Thus in order to study dynamics after T some forecast of future VAR coefficients

is needed. To construct impulse response functions we assume AT+j = AT for all j = 1, 2, ....

Three reasons motivate our choice. First, we want to use all the information contained in the

data. Second, AT represents the best forecast of AT+j whenever coefficients evolve according to

a random walk. Third, impulse response functions, under this assumption, have useful long-run

properties9. Formally impulse response functions of a shock occurring at time t at horizon k are

given by

IR(t, k) = Bt,kKt

9Other alternatives are available. For instance, Canova and Gambetti (2004), in a similar Bayesian approach,

consider the effects of the shock under all the possible realizations of future coefficients for some finite horizon of in-

terest. This implies drawing future coefficients from the prior density conditional to a draw for coefficients up to time

T from the posterior. Actually, while useful for finite horizons, such an approach creates non-trivial complications

for infinite horizons since available necessary and sufficient conditions for the convergence of
∑k

i=1

∏i

j=1
At+j...At+1

are too restrictive for our purposes.
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where

Bt,k =





Sn,n(At+k...At+1) if t + k < T

Sn,n(At+k−T
T AT ...At+1) if t + k ≥ T

Thus for each t = 1, ..., T we have a path of impulse response defined by the sequence {Bt,kKt}∞k=1

and cumulated impulse response functions {B̃t,kKt}∞k=1 where B̃t,k =
∑k

j=1 Bt,k. First note that,

as in the fixed coefficients case, if all the eigenvalues of any realization of AT are smaller than

one in modulus impulse response functions converge pointwise (see Appendix A). In particular

the limit of cumulated impulse response functions will be varying over time, depending on t.

Second, the speed of convergence and thus the long-run cumulated effects will depend on the

end-of-sample date coefficients. We use the last available time period observation in order to

maximize the quantity of information from the data, but in the empirical part we will investigate

the sensitivity of our results to different end-of-sample dates10, that is we will end the sample at

arbitrary dates different from T .

3.3 Identification

In order to identify the model and recover the representation of yt in terms of structural shocks

we should, in general, fix for all t = 1, ...T a particular matrix Kt. Since our focus is only on

technology shocks we only partially identify the model, that is we only fix a column of Kt without

attempting to identify all the other shocks. The restriction we use is the same as in Gali (1999)

and CEV: the technology shock is the only shock affecting long-run labor productivity11. For

each t = 1, ...T , let St be the unique lower triangular matrix such that StS
′
t = B̃t,∞ΣB̃′

t,∞. We

set

Kt = B̃−1
t,∞St

Thus the path of structural impulse response functions for each t = 1, ...T will be given by

IR(t, k) = Bt,kB̃
−1
t,∞St, k = 1, 2, ...

If, as in the fixed coefficients case, labor productivity is ordered first, the first shock e1t is the

technology shocks12.
10Another feasible alternative would be to study local dynamics, i.e assuming that all the coefficients are constant

from the period in which the shock occurs. In this case however a lot of in-sample information would not be used

and for this reason we do not purse this strategy.
11It is clear that it is the only shock affecting long-run labor productivity among the shocks in et. In fact in our

model potentially shock to coefficients could affect variables at long-run horizons, but in this case they would have

a different interpretation, since they would affect permanently the growth rates of labor productivity.
12We do not attempt to identify the others n − 1 shocks and we simply fix them using an atheoretical recursive

long-run ordering among the other variables. However it is important to stress that such an ordering does not affect

the dynamics of the so identified technology shock, in fact it can be showed that by changing the ordering of the

other variables the responses of all variables to technology shocks remain unchanged.
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3.4 Specifications and Estimation

3.4.1 A State-Space Representation

In order to understand model estimation it is useful to rewrite the model in a state space form.

Let At = [A0,t, A1,t...Ap,t], x′
t = [1n, y′t−1...y

′
t−p], where 1n is a row vector of ones of length n , let

vec(·) denote the stacking column operator and let θt = vec(A′
t), θT = [θ′1...θ

′
T ]′ and yT = [y′1...y

′
T ]′.

Then (3) can be written as

yt = X ′
tθt + εt (5)

where X ′
t = (In

⊗
x′

t) is a n×(np+1)n matrix, In is a n×n identity matrix, and θt is a (np+1)n×1

vector. Treating θt as a hidden state vector, equation (3) represents the observation equation of

a state space model. Let f(·) be a normal density and let us assume that f(θt+1|θt, φ) can be

represented as

θt+1 = Fθt + ut+1

where ut is a (np + 1)n × 1 Gaussian white noise process independent of εt with zero mean and

covariance Ω13, φ = {Ω,Σ} and F is a diagonal matrix of constant coefficients. We assume that

θt evolves according to

p(θt+1|θt, φ) ∝ I(θt+1)f(θt+1|θt, φ) (6)

where I(θt+1) is an indicator function assuming value zero if roots of the associated VAR polyno-

mial are outside or on the unit circle and one otherwise. In other words the function discards path

of θt whenever the associated VAR polynomial roots are unstable. Such a restriction ensures con-

vergence of impulse response functions and then makes the above discussed identification scheme

implementable since it cuts the support of the distribution in correspondence of draws with unit

or explosive roots14. Equation (6) represents the conditional prior for θt. We assume that Fjj = 1

if the coefficient is associated to lagged variables or equal to 0.999 for the time-varying intercept

terms. The first assumption yields random walk coefficients for lagged variables provided that

the roots restriction is satisfied. On the other hand, we assume that the intercept term evolve

according to a very highly persistent but stationary process. This is needed since a random walk

process for the intercept term would signify infinite prior variance. Except for the restriction on

the unit root and the assumption of stationarity of the time-varying intercept term the above state

space representation is identical to the one originally proposed by Cogley and Sargent (2001).
13We estimate the model under different assumption on Ω: diagonal, block-diagonal with the block corresponding

to the coefficients of the same equation and for the bivariate case we also specify it as full matrix. While the degree of

time variation depends on the specific assumptions main results are roughly unchanged. Furthermore independently

on the particular specification, structural coefficients are always allowed to evolve in a correlated manner (see Canova

and Gambetti, 2004).
14The restriction on the VAR polynomial roots makes the model locally stationary at each point in time, which

does not imply global stationarity.
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3.4.2 Estimation Strategy

Estimation is done in two steps. First, we characterize the unrestricted posterior distribution

pu(θT , φ|yT ). Second, we discard the draws that do not satisfy the restrictions on the VAR

polynomial roots. Since the posterior distribution is not available in closed form, we simulate it

using MCMC methods. Specifically, the first step is done using the Gibbs sampling algorithm

where the time-varying parameters and the hyperparameters are treated as two different blocks,

while the second is done by applying a rejection sampling to the unrestricted posterior distribution.

Because of the heavy notation and the technicalities involved with the construction of posterior

distributions we defer the details of the estimation to Appendix B. Once the posterior distribution

is available, we draw a path for the states and the variances, we identify the technology shock

and we compute the associated structural impulse response functions. After having computed a

sufficiently large number of draws inference is implemented by taking the mean and 68% confidence

band.

3.4.3 Specifications and Data

We use a bivariate VAR including labor productivity growth and per capita hours worked, and

a four variables VAR in which the interest rate and inflation are added (the Rπ-specification

henceforth). The bivariate VAR is important since it is the benchmark specification from which

the debate originates. On the other hand, VARs that include more variables are important both

because it is of interest to study the effects of technology shocks also on other macroeconomic

variables, and because the results may change compared to the bivariate specification.

We use quarterly US data spanning from 1954:IV to 2003:III taken from the FRED II data

base of the Federal Reserve Bank of San Louis. We initially estimate the model for the sample

1954:IV-1966:IV using fixed coefficients VAR to calibrate prior parameters and then reestimate it

from 1967:I up to 2003:III. The variables used are the following: the first differences of the logs of

labor productivity in the non-farm business sector (OPHNFB); the first difference of the logs of

the GDP deflator (GDPDEF); the federal funds rate (FEDFUNDS); per capita hours are defined

as hours worked (HOANBS) divided by the non-institutional population over 16 (CNP16OV). We

use both growth rates of hours worked and the levels in logs.
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4 Results

4.1 Impulse Response Functions

For each quarter we collect the posterior mean15 of the impulse response functions for horizons

up to 20 quarters. All 3D IRF are plotted using the following convention: on the x-axis there are

quarters after the shock, on the y-axis there are the time periods, from 1967:I up to 2003:II and

the z-axis there is the value of the response.

4.1.1 Bivariate VARs

Figure 3 displays the response of per capita hours worked (level specification in the bottom panel

and the growth rates in the top panel) to a positive technology shock in the bivariate VAR.

No matter the specification used, levels or growth rates, before early 90’s the response of hours

worked is negative and significant on impact. It is also quite persistent, lasting on average about

one year and reaching the minimum at about two or three quarters after the shock. In the levels

specification the degree of persistency gradually reduces from mid 80’s. Starting from mid 90’s,

the response becomes positive on impact, although not significant, and hump shaped. On the

other hand in the growth rates specification the response is always negative and after mid 80’s

also permanent. While generating slightly different dynamics in the last part of the sample, until

early 90’s both empirical specifications point to a persistent reduction of hours.

4.1.2 Larger VARs

Figure 4 displays the response of per capita hours worked (level specification in the bottom panel

and the growth rates in the top panel) to a positive technology shock in the Rπ VAR. Figure 5

focuses on the posterior mean of the impact effect with 68% confidence bands. The mean response

of hours at all dates and for both specifications is negative on impact although significant only

until mid 90’s. As in the bivariate case, in the levels specification the response is much more

persistent and pronounced before mid 80’s while after that date the degree of persistency tends to

reduce. A similar pattern concerns the size of the response. At the end of the 90’s the response is

about one fifth of the response during the 70’s and the reversion to the pre shock level is completed

after one year, while in the first part of the sample it occurs after two or more years. The response

for the growth rate specification is almost identical to the one in the bivariate case, it is negative

at al horizon and permanent after mid 80’s. In sum, two important results arise. First, no matter

the specification for hours worked, until early 90’s technology shocks are contractionary, hours

worked fall. Second the response on impact displays a break dated early 90’s: before that date
15Results are very similar when the medians are considered instead of the means.
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it is very pronounced and statistically different from zero while after it is much smaller and not

significant.

Figure 6, 7 and 8 display the response of labor productivity and output and inflation respec-

tively for the levels specification16. Labor productivity and output increase on impact, the former

increasing more than the second because of the reduction in the labor input. At few quarters

after the shock, both responses begin to climb to their new steady state level. Notice that, consis-

tently with the response of hours, the response of output in the levels specification is smaller on

impact in the first part of the sample and it takes more quarters to reach the new long-run level.

Interestingly, at all dates, the impact effect of labor productivity is smaller that the long-run

effect. Hence technology shocks appear to spread gradually or, at least, they affect both labor

productivity and output gradually. It should be stressed that while the same finding emerges in

the fixed coefficients case with hours worked in growth rates, in the level specification the response

of labor productivity is substantially different (see CEV): when hours enters in levels the impact

effect of labor productivity generally overshoots its new steady state. So that, labor productivity

gradually decline to the new long-run equilibrium instead of increasing to it. Thus,when one

takes into account time variations, not only the dynamics of hours change compared to fixed co-

efficients VAR, but also those of labor productivity. Inflation falls on impact and for few quarters

after the shock at all dates. The response of inflation is much more persistent before 1980 than

after, in particular before 1980 the response is hump shaped reaching the minimum after one

year, while after it steadily reduces after a large initial effect. The result suggests that technology

shocks could have contributed substantially to the changes in terms of volatility and persistence

of inflation after mid 80’s confirming results by Canova, Gambetti and Pappa (2005).

4.2 Technology Shocks and the Business Cycle

Are technology shocks important for business cycles? Are technology shocks responsible for the

pattern of output and employment fluctuations associated with the business cycle? The empirical

framework we use allows us to address these questions by decomposing historical fluctuations in

output, labor productivity and hours into a technology and a non-technology component. From

the posterior distribution we draw realizations for structural coefficients and for each realization we

collect the particular realization of structural shocks. Then using only the estimated technology

shocks and the structural coefficients we compute the predicted time series for output, labor

productivity and hours worked. Using a bandpass filter, we extract from the resulting series the

component associated with business cycle frequencies and we compute correlations and variances.

We repeat the same exercise for the non-technology component. We perform the analysis using
16We omit impulse response functions for first differences specifications, available upon request, since are very

similar.
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both the levels and the growth rates specification for hours worked.

Table 1 reports the results for the technology shock. Point estimate of the correlation between

output and hours attributable to technology shocks is 0.76 in the bivariate and 0.55 in the multi-

variate case when hours are specified in levels. Only in the bivariate case the correlation generated

by technology shocks is similar to the correlation arising in actual data and it is entirely attribut-

able to the dynamics arising in the last ten years of the sample. Correlations reduce substantially

when hours are specified in first differences. In this case they are 0.46 in the bivariate and 0.28 in

the larger VAR. On the other hand, non-technology shocks produce correlations between output

and hours which are of the order of about 0.9. The picture is even more clear if we look at the

portion of explained variance. In the levels specification technology shocks account for about

15-28% of the hours variance and 14-25% of the output variance, while in first difference they are

even smaller, 9-15% and 11-14% respectively. This means that the non-technology component

account for at least the 75% of cyclical output fluctuations.

By investigating the pattern of output fluctuations and the component associated with tech-

nology shocks under various specifications two robust facts emerge. First, the amplitude of total

output fluctuations substantially reduces over time, particularly starting from mid 80’s. Sec-

ond, the size of fluctuations due to technology shocks are roughly constant over time. This has

two main implications. First, technology shocks can hardly be considered the main cause of the

changes observed in the US business cycles in terms of size of fluctuations. Second, because

fluctuations associated to technology shocks are roughly constant while those associated to the

non-technology component reduce over time, this means that contribution of technology shocks

must have increased after mid 80’s.

A new interesting feature emerges in our framework. The non-technology component includes

two elements: the non-technology shocks (e2t,...e4t), and a second part resulting from shocks in the

time-varying intercept term propagated by the stochastically time-varying coefficients. Adding

the portion of variance explained by technology and non-technology shocks a portion of output

variance of about 5-15%, depending on the particular specification, is left unexplained. This

means that even if no such shocks occur, nonetheless we could observe fluctuations in output

and hours accounting for about the 5-15% of the variance of actual output fluctuations and

generating correlations of about 0.8-0.9. This finding is clearly ruled out in fixed coefficients.

However when the linear structure is replaced by a non-linear one in which non-linearity comes

from stochastically varying coefficients, multiplicative disturbances and shocks to the intercept

term play a role in shaping US business cycles fluctuations. This evidence is consistent with the

idea that transition dynamics arising from changes in trends or means are gradual instead of

abrupt and they generate substantial movements in output and hours which are recognizable at

the business cycles frequencies.
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4.3 Testing Time-Variations

We perform two types of test: the first is an informal test on the rate of drift of the reduced form

coefficients, while the second is based on posterior intervals for the differences in impulse response

functions. Recall that Ω represents the variance of the shocks in the unrestricted law of motion

of the coefficients. As shown in the appendix, we calibrated the prior scale matrix, Ω0, so that

a priori there is a high probability of small changes in the coefficients. In all the specifications

the posterior distribution of tr(Ω) shifts to the right of tr(Ω0), with a 80-90% of posterior mass

concentrated on values higher than tr(Ω0). This means that the data are shifting the distribution

toward a region of higher, compared to our prior, coefficients time variations. In other words data

seem to favor a specification in which coefficients are varying over time. Figure 9 exemplifies the

result for the bivariate case with hours in levels: the trace of the prior scale matrix, tr(Ω0) (the

segment) lays on the left tail of the posterior histogram of tr(Ω).

The second test is a simple posterior interval test. The idea is to test whether the responses

are different over the sample. Let t̄ be some fixed date. For all t = 1, ..., t̄− 1, t̄ + 1, ..., T we draw

from the posterior distribution of the impulse response functions to characterize the posterior of

D(t, t̄, k) = IR2,1(t, k) − IR2,1(t̄, k)

which is the difference between the response of hours at time t and t̄ at lag k to a technology shock.

We take a posterior interval centered at the posterior mean of D(t, t̄, k) and we check whether

the zero is included. In case of no significant time-variations we should find that zero is included

in the interval for all t. In the levels specification we set t̄ =1998:III17. For k = 0, we find that

there are 42 dates, concentrated between 1972 and 1981, for which the difference is significantly

different from zero. At such dates the posterior probability of the impact effect to be smaller than

the impact effect in 1998:II is on average about 0.9. For k = 4, one year after the shock, there are

4 dates, between 1978 and 1979, for which the response is different from zero. For the bivariate

case numbers are very similar: we find 36 dates for k=0 and 4 for k=4 in which the differences

are significant. For the growth rates specifications we choose 2003:III. In this case we do not find

significant differences in the responses, probably because the high uncertainty surrounding the

response after early 90’s makes the confidence band for D(t, t̄, k) extremely wide.

5 Fixed vs. Time-Varying Coefficients VARs

We compare our findings with those arising from standard VAR. In order to make the comparison

clear and simple we limit the attention to the bivariate specification.
17We choose t̄ to be the date in which the 68% lower bound for the impact effect is higher. That is the date in

which is more probable to find differences with the responses at other dates.
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5.1 What Explains the Differences?

Once time variations are allowed for, hours significantly reduce on impact at least until mid 90’s

also when specified in levels. Why do results change with respect to the fixed coefficients case? The

goal here is to investigate what are the reduced form coefficients responsible for the switch in sign of

the response. We proceed as follows: first we divide all the reduced form coefficients in four blocks,

each corresponding to the coefficients of the lags of the same variable in one equation; second,

we set all the coefficients belonging to the same block constant and equal to the corresponding

fixed coefficient estimates; third, we draw from the posterior for all the remaining time-varying

coefficients and we compute the implied impulse response functions; we repeat this procedure

for all the blocks. The switch from negative to positive occurs when the block corresponding to

hours worked in the labor productivity equation is set to be constant over time. In this case the

implied impulse response functions at all dates are positive and hump-shaped (see Figure 10),

whereas when the other coefficients are replaced the resulting dynamics are roughly unchanged,

in particular the sign of the response is unaffected. Moreover, time variations in the response

of hours completely disappear, the impact effect being nearly constant over the whole sample.

Therefore, such coefficients not only account for the switch of the sign, but they also seem to

drive time variations in the response of hours.

Figure 11 focuses on both the fixed and time-varying estimates of the coefficients of the lags

of hours worked in the labor productivity equation. Few features are worth noting. First, all

the time-varying estimates, apart the coefficient for lag one which is roughly constant over-time,

display the same pattern. They are U-shaped with a clear upward trend starting from mid 80’s

and crossing fixed coefficients estimates at some date around the end of the 80’s (for lag 2) and

the beginning of the 90’s (for lag 3 and the sum of lagged coefficient). Second, the long-run

coefficient, the sum of lagged coefficients, seems to be the most important, from a quantitative

point of view, in tracking time variations in the response of hours since it exactly matches the

pattern of variations in the impact effect. Interestingly we find that the correlation between

this coefficient and the impact effect is 0.9. Third, fixed coefficients estimates resemble a sort of

weighted average of the time-varying estimates in which the weight attributed to the last part of

the sample is higher than that attributed to the first part. This is probably due to the sharp and

synchronized increase in labor productivity growth and per capita hours worked starting from

early 90s. This is consistent with the finding that by running the analysis with fixed coefficients

and hours in levels excluding from the sample the last ten years, hours fall.

As an additional check we re-estimate the model constraining the intercept term to be constant

over time while letting all other coefficients vary. This is an important exercise since, as shown by

Fernald (2004), once one allows for trend breaks in fixed coefficients VAR, hours fall also in levels.

The reason, he claims, is that short-run dynamics are dominated by a non causal low frequencies
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correlation between labor productivity growth and the levels of hours worked attributable to

synchronized changes in the means of the two series. Therefore, it could be that these, rather

than changes in VAR coefficients, are the true responsible for the negative response of hours. If

actually trend changes are responsible for the switch, by constraining them we should observe a

rise of hours. We find that hours reduce and the response both in terms of persistence and size

is nearly identical to the benchmark case. Thus, although probably important, changes in trend

labor productivity do not seems to be the main, or at least the only, factor affecting dynamics of

hours worked.

5.2 Encompassing Fixed Coefficients Specifications

CEV show that when the true model is the VAR with hours in levels and the analysis is performed

using hours in growth rates, hours fall. The converse is not true: when the growth rates is the

true model and hours are specified in levels again hours reduce. Therefore, they argue that the

specification with hours in levels is more plausible since it can explain also the results of the

misspecified model while the growth rates specification does not. Here, using a similar approach

we investigate whether our model can encompass fixed coefficients VARs. Specifically we study

whether, by running the analysis with fixed coefficients and data generated by the time varying-

coefficients model, we can replicate the two basics facts: hours fall in growth rates and increase

in levels. We proceed as follows. We assume that the time varying coefficients VAR is the true

model and we set all the coefficients at their posterior mean values. Using the true model we

generate 500 new time series data for labor productivity growth and hours worked. Then for

each new vector of time series we estimate the response of hours to technology shocks under fixed

coefficients using both specifications, levels and growth rates. Finally we average over the 500

responses.

Figure 12 displays the results when the time varying coefficients VAR with hours in growth

rates is assumed to be the true model. Solid and dotted lines represent the responses of hours,

specified in levels and growth rates respectively, estimated with fixed coefficients VARs and actual

data. Starred lines, solid and dotted, represent the same responses but arising with simulated

data and averaged over the 500 realizations. When the true model is the time varying coefficients

VAR with hours in growth rates hours decline under both specifications. This means that, while

easily explaining the Gali’s results, the model fails in explaining the CEV’s results, since the

response of hours is negative instead of being positive. Figure 13 displays the same responses but

when the time varying coefficients VAR with hours in levels is assumed to be the true model.

In this case hours reduce when specified in first differences and increase when specified in levels,

exactly as with actual data. The model encompasses both fixed coefficients specifications, since

the misspecified VAR exactly reproduces the results of Gali and CEV. This means that using fixed
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coefficients VAR and hours in levels we would conclude that hours increase while the true model

implies a significant decline in hours for most of the sample period. Under this encompassing

criterion the time-varying levels specification seems to perform better than the growth rates one

since it is able to explain all the results previously found in literature.

6 Structural Explanations for the Dynamics of Hours Worked

6.1 Explaining the Decline of Hours

There exist basically two classes of structural explanations of why hours worked may fall after a

positive technology shock. The first relies on the presence of some frictions in the economy, while

the second relies on frictionless models in which technology generates large wealth effects. Here

we investigate whether theoretical predictions match our empirical findings.

6.1.1 Nominal vs. Real Frictions

A first explanation of the decline of hours relies on the presence of sticky prices and a not com-

pletely accommodative monetary policy. The intuition originally provided by Gali (1999) is the

following. Consider an economy where in equilibrium output equals real balances, prices are set

in advance and the monetary policy follows a simple money rule18. If, in response of a positive

technology shock, monetary policy is not sufficiently accommodative and aggregate demand ex-

pands less than the increase due to the technological improvement, then employment must fall

in order to keep supply and demand in the goods market in equilibrium19. A second explanation

relies on the presence of some real rigidities. Francis and Ramey (2001) propose a modification of

the standard RBC model which can potentially account for the reductions of hours after a tech-

nological improvement. The basic ingredients are habit formation in consumption and capital

adjustment costs. The authors show that the response of consumption and investment is much

more sluggish than in the standard case because consumers prefer not to change consumption by

too much and investment is made expensive by the capital adjustment costs. Thus if the resulting

increase in output is smaller than the increase in productivity hours must fall.

The two explanations have, as stressed by Francis and Ramey (2004), very different implica-

tions in terms of the response of real wages. In the sticky price model real wages either fall or at

most increase by little on impact and then they gradually converge to a new higher steady state
18Similar mechanisms generate from more complete dynamic models in which price predeterminacy is substituted

with a Calvo-type random price adjustment, see e.g. King and Wolman (1996).
19While monetary policy is a crucial ingredients for such an explanation, it should be stressed that a money

target rule is not a necessary condition to generate the fall in hours worked; actually some authors (Basu, 1998,

Gali and Rabanal, 2004) show that sticky prices model with more realistic policy rules, like a Taylor rule, are still

able to generate the decline in hours.
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level. On the other hand the habit formation adjustment costs model predicts that real wages

immediately rise overshooting the long-run level slightly. We reestimate the model adding the

real wage. The resulting response of wages closely track from a qualitative point of view that

of productivity. Specifically real wages slightly increase on impact and then gradually rise until

reaching the new long-run level. While in sharp contrast with the predictions of the model em-

bedding real rigidities, the behavior of wages appears to be roughly consistent with sticky prices

models.

6.1.2 Wealth Effect and Slow Technological Change

In an important paper, Campbell (1994) showed that technology improvement may generate

”perverse effects” on labor inputs. Contrary to common wisdom, in a RBC model a persistent

and permanent negative technology shock (what the author calls a ”productivity slowdown”) may

actually increase hours worked for some quarters. The reason is that, due to its slow diffusion,

the shock triggers a large wealth effect that dominates the substitution effect in the short-run and

makes consumers to substitute leisure for work. The increase in hours can be so sustained that

output can rise in the very short-run. By reversing the sign of the shock, the above mechanism

could explain why a technological improvement may actually reduce, instead of raising, hours

worked. A similar mechanism emerges in the recent works by Linde (2004) and Rotemberg

(2000).

One of the main implications of the dynamics arising from those models is that both consump-

tion and consumption-to-output ratio must increase on impact. The former increases because of

the wealth effect, while the second increases because investment reduces since agents anticipate

that marginal productivity of capital will be higher in the future. In order to assess the relevance

of this explanation we estimate the model adding consumption and investigating the response of

hours and both consumption and consumption-to-output ratio. As in previous specification hours

fall on impact and the dynamics are almost unchanged. Consumption rises on impact over all

the sample although the response is not significantly different from zero except for few year at

the end of the 90s. On the contrary consumption-to-output declines on impact for all the dates

and until mid 80s the response is also significantly different from zero. The sign of the response

of consumption-to-output ratio is at odds with the predictions of RBC models with slow tech-

nological changes. Therefore while it cannot be excluded that large wealth effects stand behind

the reduction of hours worked, such effects do not seem to be generated by technological progress

diffusing slowly throughout the economy.
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6.2 Explaining Time Variations: the Fed’s Time-Varying Response

From an econometric point of view the reduction in magnitude of the response of hours on

impact seems to depend to a large extent on changes in the reduced form coefficients in the

labor productivity equation. Nevertheless there could be several possible structural explanations

for this pattern. As mentioned earlier, in a sticky prices model the response of hours worked

crucially depends on the monetary policy conduct. The more expansionary is the monetary

policy after the technological improvement, the smaller is the decline of hour worked because the

higher is the expansion in the aggregate demand. Therefore, changes in monetary policy could

explain why the response of hours has changed over time. Some authors (see e.g. Orphanides and

GLV) argue that before 1979 monetary authorities had a less aggressive stance against inflation

and were giving more importance to output stabilization. Due to mismeasurements of potential

output, movements in interest rate overshooted those prescribed by the optimal rule and policies

adopted before 1979 turned out to be overstabilizing. Such a conjecture could explain why the

fall of hours worked is more pronounced before mid 80’s than after20.

Our framework allows us to study whether changes in the response of hours depend on shifts in

monetary policy preferences. We estimate a simple Taylor rule in which the interest rate responds

only to contemporaneous inflation and output growth21

it = atπ
tech
t + bt∆ytech

t + εt (7)

where it is the federal funds rate and πtech
t , ∆ytech

t are respectively the component of inflation

and output growth associated to technology shocks22. The previous explanation would hold if the

coefficient on output is high before mid 1980 than after. Figure 14 displays the two coefficients,

at bt, along with the 68% confidence bands. First, consistently with a large amount of evidence

in empirical literature, we find that monetary policy stance becomes more aggressive against

inflation from early 80’s, the coefficients raising from about 1 during the 70’s up to 2.5-3 during

the 80’s. However, differently from what is argued by the majority of works, and consistently

with a growing stream of literature (see e.g., Bernanke and Mihov, 1998, Canova, 2004, Canova

and Gambetti, 2004, Primiceri, 2005, Sims, 2001, and Sims and Zha, 2004) the change does not

represent a permanent break. Interestingly around 1992 the coefficient reduces again, being about

1.4, and in 2001 is not significantly different from the 70’s level, around 1. Second, the coefficient

on output is almost constant over all the sample, in particular we do not find a significant change

after mid 80’s. Hence the result is hardly consistent with a primary role of monetary policy in
20Similar results can arise in a framework where monetary authorities are learning, see Lansing (2000).
21An alternative strategy would be to compute the ratio between the response of the interest rate and inflation

and output growth. We do not follow this strategy because in that case we would not control for the other variables.
22Note that by construction the regressors exogenous and orthogonal to the residuals justifying the Kalman Filter

estimation.

19



shaping changes in the transmission of technology shocks23.

7 Robustness and Extensions

We perform a number of robustness checks. We first check whether our results are robust to the

choice of the end-of-sample date and definitions of IRF and second whether alternative identifica-

tion schemes give qualitatively similar results. In addition, we extend the model to consider also

investment-specific technology shocks.

7.1 Alternative End-of-Sample Dates and IRF Definitions

The definition of impulse response functions used in the paper has a potential drawback when

identification is achieved with long run restrictions. Structural short-run dynamics for each date

in the sample depend on the end-of-sample coefficients matrix AT . We choose as end-of sample

date the last available observation for the data in order to maximize the available information.

However, it could be that different choices of T yield different results, in particular for the last

part of the sample. Therefore, we cut the sample at arbitrary dates, we choose two and four

years before the last available observation and we run the analysis using AT−8 and AT−16. As

expected small quantitative differences emerge mainly for the quarters in the last part of the

sample. However our main conclusions are very robust. First, the response of hours worked is

still negative at all horizons with shapes almost identical to those resulting from the benchmark

case. Second, the size of the impact effect is reducing over time in absolute value, in particular

the response of hours is not significantly different from zero after early 90’s.

We also check if results are robust using a different definition of impulse response functions.

Specifically, we sample future coefficients from the prior density conditional to a draw from the

posterior for the in-sample-coefficients. In so doing we take into account future coefficients varia-

tion. Clearly, we have to discard the draws which yield impulse response functions which do not

satisfy some convergence criterion. Also in this case, mean impulse response are almost identical

to the benchmark case.

7.2 Sign Restrictions

Recently, a number of papers questioned the validity of the conclusions drawn using long-run

restrictions (see e.g. Uhlig, 2003). Some authors (Francis, Owyang and Theodorou, 2003, Dedola

and Neri, 2004, and Peersman and Straub, 2004, 2005), taking a radically different approach,
23The same conclusion is reached by looking at the response of the real interest rate. Actually we do not find

evidence that the real interest rate reacts more before 1979 than after. Nevertheless we do find a clearly declining

trend in the response of the real rate but only starting from early 90’s and lasting until 2000.
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suggest to use inequalities restrictions directly derived from DSGE models, in the spirit of the

restrictions originally proposed by Canova and De Nicolo (200) and Uhlig (2005). Here we check

the robustness of results when long-run identifying restrictions are replaced with sign restrictions.

We take as identifying restrictions a set of sign inequalities which are robust under different

specifications of the technology process. Specifically we assume that a positive technology shock

(i) does not raise inflation and the interest rate for three quarters and (ii) does not decrease labor

productivity for 40 quarters after the shock. We leave all the other shocks unidentified. We use the

same draws for reduced form coefficients used under long-run restrictions and the implementation

of the restrictions is identical as Canova Gambetti and Pappa (2005). Again per capita hours

worked fall after a positive technology shock. The impact effect is negative, the responses reach

their minimal level between the first and second quarter after the shock and then they begin to

climb back toward the pre-shock level and after between one and two years the responses become

positive. Responses are qualitatively similar to those found under long-run restrictions while time

variation seem to be relatively limited: in fact responses are roughly similar at all dates.

7.3 Investment-Specific Technology Shocks

Greenwood, Hercowitz and Krussel (2000) (GHK henceforth) put forward a version of the RBC

model in which the main source of technological progress is not of the aggregate sector neutral kind

as we identified but rather is specific to the investment sector. Using a calibrated version of the

model, the authors find, that investment-specific technology shocks explain about 30% of output

fluctuations. Similarly, Fisher (2005) through VAR analysis finds that unlike neutral shocks

investment specific technological change contribute for about 40-60% to aggregate fluctuations.

We investigate how results change when also investment-specific technology shocks are considered

in the analysis. We estimate the TVC-BVAR using, in the following order, real price of investment,

labor productivity and per capita hours worked. Following the identification scheme proposed by

Fisher (2005), we assume that (i) neutral and investment-specific technology shocks are the only

shocks affecting long run labor productivity and that (ii) investment-specific technology shocks

the only shock affecting long run real price of investment. Using the previous recursive long run

scheme, the first shock will be the investment-specific and the second the sector-neutral shock.

Differently from the benchmark case here both shock may affect long run labor productivity.

Unlike the case of neutral technological progress, hours increase at all dates after an investment-

specific technology shocks and except for some quarters around early 80’s the response is par-

ticularly persistent and hump-shaped. Furthermore, in response to neutral technology shocks

hours fall in both specifications. Table 2 documents the contribution of the two types of tech-

nology shocks to aggregate fluctuations and the implied correlations among variables. Panel A

refers to the levels specification, panel B to the first difference specification. The two technology
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shocks together explain about 39-53% of the total volatility of output ad hours worked at busi-

ness cycles frequencies, depending on the particular specification. In particular neutral technology

shocks, as in the benchmark case, account for about 10-20% while investment-specific for about

20-30% of the total variability at the business cycles fluctuations for both variables. Interestingly

investment-specific shocks generate a high correlation between output and hours, about 0.8-0.9,

which is similar to the one found in actual data, while correlation generated by neutral shocks are

similar to the previous case, about 0.5-0.6. When also investment-specific shocks are included in

the analysis the importance of technology shocks on the whole in explaining aggregate fluctuations

is remarkably increased. On the other hand, results for neutral technology found previously are

confirmed here.

7.4 Sensitivity to the Choice of Variables

Finally we check whether results are sensitive to the choice of variables. CEV argue that it is

important, at least in fixed coefficients VARs, to include consumption-to-output and investment-

to-output ratio. Taking their suggestion we estimate the model using a different specification

including labor productivity growth rates, hours consumption-to-output and investment-to-output

ratio. Results using the new specification are qualitatively very similar to previous results. In the

growth rates specification hours reduce persistently at all dates. In the levels specification the

pattern of the response of hours worked is almost identical to the bivariate case. The response is

negative, particularly persistent and significant on impact until mid 90’s. From mid 90’s the mean

response turns positive and humped shaped but not significantly different from zero on impact.

Table 3 displays the implied correlations and percentages of variances explained by technology

shocks. When hours are specified in levels technology shocks generate a correlation between

output and hours of 0.79 and explain about the 38% of the total output variance. Numbers are

slightly higher than in the benchmark specifications. In the growth rates specification technology

shocks generate a correlation between output and hours of 0.52 and the percentage of explained

output variance is about 17%. Also under the new specification main conclusions are confirmed.

8 Conclusions

The response of hours worked to technological improvements is a key issue in assessing the rele-

vance of different theoretical characterizations of the business cycle. From the point of view of the

empirical research, evidence in favor of both a decline and a rise of hours worked emerges. Results

crucially depend on how the time series for hours worked is specified in the VAR. In this paper we

argue that conflicting results may arise because important time variations and structural changes

the US economy underwent during the postwar period are a priori ruled out by standard models.
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In other words, we argue that differences in the results depending on the particular specification

for hours worked may simply originate from a more fundamental misspecification arising from the

too strong assumption of model coefficients constancy. We investigate the effects of technology

shocks on hours worked using a Bayesian Vector Autoregression with drifting coefficients aug-

mented with the same standard restriction used in the literature, that is the technology shock is

the only shock affecting long-run labor productivity.

Time-varying dynamics matter. Once time variations are allowed for, competing empirical

specifications (levels and growth rates) yield similar results: hours fall at least until mid 90s. The

decline is particularly pronounced and statistically different from zero until early 90’s, while after

that date hours are less responsive to technology shocks. We argue that the differences between

fixed and time-varying coefficients are due to instabilities in the coefficients of hours worked in

the labor productivity equation. Other findings complement our main result. Aggregate sector

neutral technology shocks of the kind emphasized by RBC proponents can hardly be considered

the only force driving business cycles since they can only explain about 11-25% of the total

output variance. Nevertheless when also investment-specific technology shocks are considered,

the percentage of output variance accounted for by technology shocks as a whole is remarkably

increased.

The decline of hours worked is in line with models of nominal rigidities or with RBC mod-

els in which technology generates large wealth effects. However while the negative sign of the

response has reliable structural explanations, time variations in the size of the response are left

unexplained. Actually changes in the monetary policy conduct are not able to account for the

reduction in absolute value of the impact effect on hours. So why are technology shocks less and

less contractionary beginning from early 90’s? We leave the answer to this question to future

investigations.

23



References

Basu, S. J. G. Fernald, and M. Kimball (2004), ”Are Technology Shocks Contractionary?” mimeo

Bernanke, B. and I. Mihov (1998), ”Measuring Monetary Policy”, The Quarterly Journal of

Economics, 113:869-902.

Blanchard, O.J. and J. Simon (2000), ”The Long and Large Decline in U.S. Output Volatility”,

Brookings Papers on Economic Activity, 1, 135-147.

Boivin, J. and M. Giannoni (2002), ”Has Monetary Policy Become Less Powerful?”, Columbia

Business School, mimeo.

Boivin, J. and M. Giannoni (2002b), ”Assessing Changes in the Monetary Transmission Mech-

anism: A VAR Approach”, Federal Reserve Bank of New York Monetary Policy Review, 8(1),

97-111.

Brainard, W. C. and G. L. Perry (2000), ”Making Policy in a Changing World”, in G. Perry

and J. Tobin (eds.), Economic Events, Ideas, and Policies

Campbell, J. (1994), ”Inspecting the Mechanisms: An Analytical Approach toi the Stochastic

Growth Model”, Journal of Monetary Economics, 33(3):463:506.

Canova, F. (2004) ”Monetary Policy and the evolution of the Us economy: 1948-2002”, avail-

able at www.igier.uni-bocconi.it/ Canova.

Canova, F. and G, De Nicolo (2002), ”Monetary Disturbances Matter for Business Cycles

Fluctuations in the G-7”, Journal of Monetary Economics, 29, 1131-1159.

Canova, F and L. Gambetti (2004), ”Structural Changes in the US Economy: Bad Luck or

Bad Policy?”, mimeo, UPF.

Canova, F., L. Gambetti and E. Pappa (2005), ”The Structural Dynamics of US Output and

Inflation: What Explain the Changes?”, mimeo, UPF.

Chari, V.V., P. J. Kehoe and E. R. McGrattan (2005), ”A Critique of Structural VARs Using

Real Business Cycle Theory”, Federal Reserve Bank of Minneapolis Working Paper 631.

Christiano, L., M. Eichenbaum and R. Vigfusson (2003), ”What Happens After a Technology

Shock?”, NBER Working Papers 9819.

Christiano, L., M. Eichenbaum and R. Vigfusson (2005), ” Assessing Structural VARs” mimeo

Northwestern University.

Clarida, R., J. Gali and M. Gertler (2000) ”Monetary Policy Rule and Macroeconomic Sta-

bility: Evidence and Some Theory”, Quarterly Journal of Economics, CXV, 147-180.

Cogley, T. and T.J. Sargent (2001) ”Evolving Post-World War II U.S. Inflation Dynamics”,

NBER Macroeconomic Annual, 16,

Cogley, T. and T.J. Sargent (2003) ”Drifts and Volatilities: Monetary Policies and Outcomes

in the Post WWII U.S. ”, New York University, mimeo.

24



Dedola, L. and S. Neri (2004) ”What Does a Technology Shock Do? A VAR analysis with

Model-Based Sign Restrictions” forthcoming Journal of Monetary Economics

Erceg, C.J., L. Guerrieri and C. Gust (2004), ”Can Long Run Restrictions Identify Technology

Shocks?”, Boards of Governors of the Federal Reserve System, International Finance Discussion

Papers 792.

Fernald, J. (2004), ”Trend Breaks, Long Run Restrictions and the Contractionary Effects of

a Technology Shock”, mimeo, Federal Reserve Bank of Chicago.

Fisher, J. (2005), ”The Dynamic Effects of Neutral and Investment-Specific Technology Shocks”,

Federal Reserve Bank of Chicago, mimeo.

Francis, N. and V. Ramey (2003) ”Is the Technology-Driven Real Business Cycle Hypothesis

Dead? Shocks and Aggregate Fluctuations Revisited” forthcoming Journal of Monetary Eco-

nomics

Francis, N.R., M.T. Owyang and A.T. Theodorou (2004), ”The Use of Long Run Restrictions

for the Identification of Technology Shocks”, The Federal Reserve Bank of St. Louis Review

Nov-Dec: 53-66.

Francis, N., M. Owyang and J. Roush (2005), ”A Flexible Finite-Horizon Identification of

Technology Shocks”, Boards of Governors of the Federal Reserve System, International Finance

Discussion Papers 832.

Gali, J. (1999), ”Technology, Employment and the Business Cycle: Do Technology Shocks

Explain Aggregate Fluctuations?”, American Economic Review, 89(1): 249-271.

Gali, J., D. Lopez-Salido and J. Valles (2003), ”Technology Shocks and Monetary Policy:

Assessing the Fed’s Performance” Journal of Monetary Economics, 50(4): 723-743.

Gali, J. and P. Rabanal (2004), ”Technology Shocks and Aggregate Fluctuations: How Well

Does the RBC Model Fit Postwar US Data?”, NBER Macroeconomic Annual.

Gali, J. (2005)” Trends in Hours, Balanced Growth, and the Role of Technology in the Business

Cycle”, Federal Reserve Bank of St.Louis Review, 52:1107-1118.

Gelman, A.,J.B. Carlin, H.S. Stern and D.B. Rubin (1995) Bayesian Data Analysis, London:

Chapman and Hall.

Kahn, J. A.and R. W. Rich (2003), ”Traking the New Economy: Using Growth Theory to

Detect Changes in Trend Productivity”, Federal Reserve Bank of New York, mimeo.

Lansing, K. (2000), ”Learning about Shift in Trend Output:implications for Monetary Policy

and Inflation”, Federal Reserve Bank of San Francisco Working Papers 2000-16.

Linde, J. (2004), ”The Effect of Permanent Technology Shocks on Labor Productivity and

Hours in the RBC Model” Working Paper Series, No: 161 Sveriges Riksbank.

McConnell, M. and Perez Quiroz, G. (2000) ”Output fluctuations in the US: what has changed

since the early 1980s? ”, American Economic Review, 90, 1464-1476.

25



Orphanides, A. (2001), ”Monetary Policy Rules, Macroeconomic Stability, and Inflation: A

View from the Trenches”, Boards of Governors of the Federal Reserve System Discussion Paper

62, forthcoming, Journal of Money, Banking and Credit.

Orphanides, A. (2002), ”Monetary Policy Rules and the Great Inflation”, American Economic

Review, 92(2): 115-120.

Peersman, G. and R, Sraub (2004), ”Technology Shocks and Robust Sign Restrictions in a

Euro Area SVAR”, Working Paper Series, No.373 ECB.

Pesavento, E. and B. Rossi, (2004), ”Do Technology Shocks Drive Hours Up or Down? A

Little Evidence Frm an Agnostic Procedure”., mimeo, Emory University.

Prescott, E. C. (1986), ”Theory Ahead of Business Cycle Measurement”, Quarterly Review,

10:28-33.

Primiceri, G. (2005), ”Time Varying Structural Vector Autoregressions and Monetary policy”,

forthcoming Review of Economic Studies.

Roberts, J. (2001), ”Estimates of the Productivity Trend Using Time-Varying Parameter

Techniques”, Contributions to Macroeconomics, 1(1):1-27.

Rotemberg (2003), ”Stochastic Technical Progress, Smooth Trends and Neary Dstinct Business

Cycles”, American Economic Review, 93(5): 1543-1559.

Shea, J. (1998), ”What Do Technology Shocks Do?”, NBER Macroeconomic Annual.

Sims, C. (2001) ”Stability and Instability in the US Monetary Policy Behavior.” mimeo,

Princeton University.

Sims, C.A. and T. Zha (2004), ”Were there Regime switches in US Monetary Policy”, Federal

Reserve Bank of Atlanta, working paper 2004-14.

Stock, J. and Watson, M (2003) ”Understanding Changes in Business Cycle Dynamics”, Har-

vard University, mimeo.

Stock, J.H. and M.W. Watson (1996), ”Evidence on Structural Instability in Macroeconomic

Time Series Relations”, Journal of American Statistical Association, 93:349-358.

Uhlig, H. (2004), ”Do Technology Shocks Lead to a Fall in Total Hours Worked?” Journal of

the European Economic Association forthcoming

Uhlig, H. (2005), ”What Are the Effects of Monetary Policy on Output? Results from an

Agnostic Identification Procedure”, Journal of Monetary Economics, 52(2): 381:419.

Whelan, K. (2004), ”Technology Shocks and Hours Worked: Checking for Robust Conclu-

sions”, Central Bank and Financial Services Authority of Ireland, Research Technical Paper,

October 2004.

Willis, J. (2003), ”Implications of Structural Changes in the U.S. Economy for Pricing Behavior

and Inflation Dynamics”, Federal Reserve Bank of Kansas City Economic Review 88(1): 5-27.

26



Appendix

A

Consider any τ < T . Long-run impulse response and cumulated impulse response functions are

given respectively by the limits

lim
k→∞

Ak
TAT ...Aτ+1

lim
k→∞

Aτ + (I +
k∑

j=1

Aj
T )Bτ

where Aτ = I+Aτ+1+Aτ+2Aτ+1+...+AT−1AT−2...Aτ+2Aτ+1 and Bτ = ATAT−1...Aτ+2Aτ+1.

If for any realization of AT the largest eigenvalue is smaller than one in absolute value then impulse

response converge pointwise to zero while long-run cumulated impulse response converge pointwise

to Aτ + (I −AT )−1Bτ . This comes from

lim
k→∞

Ak
T = 0

lim
k→∞

(I +
k∑

j=1

Aj
T ) = (I −AT )−1

B

Priors

We assume θ0, Σ and Ω to be independent. We specify the following prior distributions

p(θ0) = N(θ̄, P̄ )

p(Σ) = IW (Σ−1
0 , ν0)

p(Ω) = IW (Ω−1
0 , ν0)

For the block diagonal and diagonal specification we use respectively p(Ωi) = IW (Ω−1
i0 , ν0), where i

refers to the i−th equation and p(Ωii) = IG(1
2 , Ωii0

2 ). We ”calibrate” the prior by estimating a fixed

coefficients VAR using data from 1954:IV up to 1966:IV. We set θ̄ equal to the point estimates of

the coefficients and P̄ to the estimated covariance matrix. Σ0 is equal to the estimated covariance

matrix of VAR innovations and Ω0 = %P̄ and ν0 equal to the number of observations of the initial

sample. The parameter % measures how much the time variation is allowed in coefficients. We

set % = 0.01.

The joint prior is

p(θT , φ) = p(θT |φ)p(φ)

∝ I(θT )f(θT |φ)p(θ0)p(Σ)p(Ω) (8)

where I(θT ) =
∏T

t=0 I(θt) and f(θT |φ) = f(θ0|φ)
∏T−1

t=0 f(θt+1|θt, φ)..
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Posterior Density

In a Bayesian approach the goal is to summarize the posterior density of the objects of interests.

The posterior density is p(θT , φ|yT ). This density is very complicated but it can be decomposed

into more tractable pieces. First we can express it as

p(θT , φ|yT ) ∝ p(yT |θT , φ)p(θT , φ)

where the first term of the right hand side is the likelihood and the second the joint posterior

density. Conditional to the states up to time T and the hyperparameters the measurement

equation is linear with Gaussian innovation, thus the conditional likelihood is Gaussian. The

second term can be splitted into a conditional and a marginal density thus we have

p(θT , φ|yT ) ∝ f(yT |θT , φ)p(θT |φ)p(φ)

∝ I(θT )
[
f(yT |θT , φ)f(θT |φ)p(φ)

]

where from the first to the second line we used the restricted prior distribution for the states. Note

that the term in brackets is the posterior without the restriction on impulse response functions.

Thus our posterior distribution is proportional to the unrestricted posterior density, pu,

p(θT , φ|yT ) ∝ I(θT )pu(θT , φ|yT )

This is particularly convenient since we can first characterize the unrestricted posterior and then

perform the rejection sampling (see below) to collect the draws satisfying the restriction.

Drawing from the posterior of reduced form parameters

The Gibbs Sampler we use to compute the posterior for the reduced form parameters iterate on

two steps. The implementation is identical to Cogley and Sargent (2001).

• Step 1: States given hyperparameters

Conditional on yT , φ, the unrestricted posterior of the states is normal and pu(θT |yT , φ) =

f(θT |yT , φ)
∏T−1

t=1 f(θt|θt+1, y
t, φ). All densities on the right end side are Gaussian they their

conditional means and variances can be computed using the Kalman backward filter. Let θt|t ≡
E(θt|yt, φ);Pt|t−1 ≡ V ar(θt|yt−1, φ);Pt|t ≡ V ar(θt|yt, φ). Given P0|0, θ0|0, Ω and Σ, we compute

Kalman filter recursions

θt|t−1 = Fθt−1|t−1

Pt|t−1 = FPt−1|t−1F
′ + Ω

K = (Pt|t−1Xt)(X ′
tPt|t−1Xt + Σ)−1

θt|t = θt|t−1 + Kt(yt − X ′
tθt−1|t−1)

Pt|t = Pt|t−1 − Kt(X ′
tPt|t−1) (9)
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The last iteration gives θT |T and PT |T which are the conditional means and variance of f(θt|yT , φ).

Hence f(θT |yT , φ) = N(θT |T , PT |T ). The other T−1 densities can be computed using the backward

recursions

θt|t+1 = θt|t + Pt|tF
′P−1

t|t+1(θt+1 − θt|t)

Pt|t+1 = Pt|t − Pt|tF
′P−1

t+1|tFPt|t (10)

where θt|t+1 ≡ E(θt|θt+1, y
t, φ) and Pt|t+1 ≡ V ar(θt|θt+1, y

t, φ) are the conditional means and vari-

ances of the remaining terms in pu(θT |yT , φ). Thus f(θt|θt+1, y
t, φ) = N(θt|t+1, Pt|t+1). Therefore,

to sample θT from the conditional posterior we proceed backward, sampling θT from N(θT |T , PT |T )

and θt from N(θt|t+1, Pt|t+1) for all t < T .

• Step 2: Hyperparameters given states

Since (Σ,Ω) are independent, we can sample them separately. Conditional on the states and the

data εt and ut are observable and Gaussian. Combining a Gaussian likelihood with an inverse-

Wishart prior results in an inverse-Wishart posterior, so that

p(Σ|θT , yT ) = IW (Σ−1
1 , ν1)

p(Ω|θT , yT ) = IW (Ω−1
1 , ν1)

where Σ1 = Σ0 +
∑T

t=1 εtε
′
t, Ω1 = Ω0 +

∑T
t=1 utu

′
t, ν1 = ν0 + T , . For the block diagonal and

diagonal specification we have p(Ωii|θT , yT ) = IG(T+1
2 , (T+1)Ωii1

2 ) where Ωii1 = Ωii0 +
∑T

t=1 u2
it

and when block-diagonal p(Ωi|θT , yT ) = IW (Ω−1
i1 , ν1), Ωi1 = Ωi0 + ΩiT and ΩiT =

∑T
t=1 ui

tu
i′
t

where ui
t is the vector of shocks in the coefficients of equation i.

Under regularity conditions and after a burn-in period, iterations on these two steps produce

draw from pu(θT ,Σ,Ω|yT ). We have constructed CUMSUM graphs to check for convergence and

found that the chain had converged roughly after 2000 draws for each date in the sample. The

densities for the parameters obtained with the remaining draws are well behaved and none is

multimodal. We keeping one every four of the remaining 8000 draws and discard all the draws

generating non convergent impulse response functions. The autocorrelation function of the 2000

draws which are left is somewhat persistent. We could reduce it by taking draws more largely

spaced but this comes at the price of reducing the number of draws which satisfy the VAR

polynomial roots restrictions and therefore substantially reduce the precision of the estimates. In

the end, we have about 250-300 draws for each date to conduct structural inference.
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The Rejection Sampling

This second step ensures that posterior density puts zero probability to draws which do not satisfy

the restriction on impulse response functions convergence24. The implementation of the rejection

sampling is very similar to those in Cogley and Sargent (2001). First we need a candidate density

g(θT , φ), satisfying three properties: i) must be non negative and well defined for all (θT , φ) for

which p(θT , φ|Y T ) > 0; ii) it must have finite integral; iii) the importance ratio R(θT , φ) must

have an upperbound Z

R(θT , φ) =
p(θT , φ|Y T )

g(θT , φ)
≤ Z < ∞

where

p(θT , φ|Y T ) =
I(θT )pu(θT , φ|yT )∫ ∫

I(θT )pu(θT , φ|yT )dθT dφ

A natural candidate density is the unrestricted posterior pu(θT , φ|yT ) because is a probability

density, integrates to one and it is non-negative and it is defined for all (θT , φ). Moreover we have

R(θT , φ) ≤ 1∫ ∫
I(θT )pu(θT , φ|yT )dθT dφ

= Z

and Z is finite if the probability of a draw with associated convergent impulse response functions

from the unrestricted posterior, the denominator, is non-zero. First we draw a trial (θT
i , φi) from

the unrestricted posterior, second we accept it with probability R(θT ,φ)
Z = I(θT ) that is with

probability one if it satisfies restrictions or zeros if it does not.

Drawing Impulse Response Functions

It is very easy to draw impulse response functions from the posterior distribution. Note that

impulse response functions are continuous functions of the autoregressive coefficients. For a given

draw of θT ad Σ from the joint posterior we simply form the product Bt,k, we compute the limit

B̃t,∞ and the matrix Kt. We compute impulse response functions associated to that draw. We

repeat this step a sufficiently large number of time and collecting the draw at each step. Eventually

we compute median or mean and confidence bands.

24See Gellman, Carlin, Stern and Rubin (1995).
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Tables

Table 1: Technology Shocksa

Specifications Corr(lp,h) Corr(lp,y) Corr(h,y) % Var(lp) % Var(h) % Var(y)

Biv :

levels -0.1022 0.5917 0.7639 0.4648 0.2852 0.2571

∆logs -0.4909 0.6557 0.4616 0.6229 0.1576 0.1493

Rπ:

levels -0.3396 0.6075 0.5495 0.3814 0.1546 0.1489

∆logs -0.4975 0.7627 0.2780 0.4541 0.0905 0.1142

a Correlations and variance at business cycles frequencies. lp = labor productivity, h = per capita

hours, y = output.

Table 2: Technology shocks under the CI specification

Specifications Corr(lp,h) Corr(lp,y) Corr(h,y) % Var(lp) % Var(h) % Var(y)

levels 0.0062 0.6193 0.7986 0.4713 0.3632 0.3384

∆logs -0.5691 0.4935 0.5191 0.4748 0.1185 0.1692

Table 3: Neutral and Investment-Specific shocks

Specifications Corr(lp,h) Corr(lp,y) Corr(h,y) % Var(lp) % Var(h) % Var(y)

Neutral

levels -0.2114 0.5580 0.7236 0.4038 0.2225 0.2066

∆logs -0.4096 0.6441 0.4852 0.3833 0.1052 0.0981

Investment-Specifc

levels 0.3079 0.6447 0.9300 0.2111 0.3388 0.3271

∆logs 0.2315 0.6209 0.9116 0.1656 0.2140 0.2170

Both

levels 0.0504 0.5869 0.8509 0.6239 0.5514 0.5356

∆logs 0.0716 0.6816 0.7912 0.6309 0.3418 0.3939
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Figure 1:Effects of technology shocks on hours worked (first differences and levels specification in top and
bottom panel respectively) in the bivariate VAR, full-sample.
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Figure 2: Effects of technology shocks on hours worked (levels) in two subsamples: 1954:III-1979:IV in
the top panel, 1982:III-2003:IV in the bottom panel.
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Figure 3: Response of hours worked to a technology shock in the bivariate VAR: top panel first difference
specification, bottom panel levels specification.
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Figure 4: Response of hours worked to a technology shock in the Rπ VAR: top panel first difference
specification, bottom panel levels specification.
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Figure 5: Impact effects of technology shock on hours worked in the Rπ VAR, posterior median and 68%
confidence bands. Top panel first difference specification, bottom panel levels specification.
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Figure 6: Response of labor productivity to a technology shock in the Rπ VAR, levels specification.
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Figure 7: Impulse response functions of output to a technology shock in the Rπ VAR, levels specification.

34



5
10

15
20

25
30

35
40

1970
1975

1980
1985

1990
1995

2000

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

x 10
−3

Levels

Figure 8: Impulse response functions of inflation to a technology shock in the Rπ VAR, levels specification.
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Figure 9: Trace of the posterior (histogram) and prior (segment) variance matrix of the coefficients..
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Figure 10: Top panel impulse response of levels of hours with coefficients of hours in the labor productivity
equation replaced, bivariate VAr with hours in levels.
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Figure 11: Estimates of lagged coefficients of hours worked in the labor productivity equation in the
fixed and time-varying coefficients VAR.
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Figure 12: Encompasing test for the growth rates specificaion. Dotted line: response of hours in the growth
rates specification using real data. Solid line: response of hours in the levels specification using real data.
Dotted starred line: response of hours in the growth rates specification using data generated by the time
varying model with hours in growth rates. Solid starred line: response of hours in the levels specification
using data generated by the time varying model with hours in growth rates.
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Figure 13: Encompasing test for the levels specificaion. Dotted line: response of hours in the growth
rates specification using real data. Solid line: response of hours in the levels specification using real data.
Dotted starred line: response of hours in the growth rates specification using data generated by the time
varying model with hours in levels. Solid starred line: response of hours in the levels specification using
data generated by the time varying model with hours in levels.
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Figure 14: Central banks preferences: coefficients on inflation and output growth in levels (top panel) and
growth rate (bottom panel) specifications.
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