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Abstract. This paper deals with the use of the CAPM for capital budgeting purposes. Four different measures are 

deductively drawn from this model: the disequilibrium Net Present Value, the equilibrium Net Present Value, the 

disequilibrium Net Future Value, the equilibrium Net Future Value. While all of them may be used for accept-reject 

decisions, only the equilibrium Net Present Value and the disequilibrium Net Future Value may be used for 

valuation, given that they are additive. However, despite their additivity, the latter are not always reliable metrics, 

because they do not signal arbitrage opportunities whenever there is some state of nature for which they are 

decreasing functions with respect to the end-of-period cash flow. In this case, the equilibrium value of a project is not 

the price it would have if it were traded in the security market. This result is the capital-budgeting counterpart of 

Dybvig and Ingersoll’s (1982) result. 
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Introduction 

 

The use of the CAPM for capital budgeting purposes traces back to the 60s and 70s, when various authors 

developed a theoretical link between this asset pricing model and corporate capital budgeting decisions. 

Among the several contributions we find classical papers of foremost authorities such as Tuttle and 

Litzenberger (1968), Hamada (1969), Mossin (1969), Litzenberger and Budd (1970), Stapleton, (1971, 

1974), Rubinstein (1973), Bierman and Hass (1973, 1974), Bogue and Roll (1974). The decision criteria 

these authors present are seemingly different, but, logically, they are equivalent (see Sebnet and Thompson, 

1978) and may be framed in terms of risk-adjusted cost of capital (see Magni, 2007a): the resulting capital 

budgeting criterion suggests that, as long as the CAPM assumptions are met, a firm aiming at maximizing 

share price should undertake a project if and only if the project’s risk-adjusted cost of capital exceeds the 

project’s expected internal rate of return. These classical papers are aimed at formally deducting a decision 

rule from the CAPM, but do not particularly focus on project valuation; although the net-present-value rule 

is often reminded, no explicit claim appears that the risk-adjusted cost of capital may or may not be used 

for valuing projects. The risk-adjusted cost of capital is presented as depending on a disequilibrium (cost-

based) systematic risk (see Rubinstein, 1973), but project value is often framed in a certainty-equivalent 
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form (Bogue and Roll, 1974). As a result, ambiguities arise on the use of the project NPV as a decision rule 

or as a valuation tool, and uncertainties arise regarding the correct calculation of the NPV, using either the 

equilibrium or the disequilibrium systematic risk. Furthermore, while most of the contributions deal with 

net present values, no thorough analysis is found in the literature concerning the relation between present 

value and excess return (but see Weston and Chen, 1980). Few contributions have drawn attention on these 

topics. Among these, we find Rendleman’s (1978) paper, which deals with the use of cost-based 

(disequilibrium) covariance terms as opposed to market-determined (equilibrium) covariance terms. The 

author suggests that if a firm were to rank projects on the basis of excess of internal return over equilibrium 

(market-determined) return, an incorrect decision would be reached. Weston and Chen (1980) reply that 

either the disequilibrium or equilibrium return may be used for ranking projects, if appropriate use is made 

of both. And while the equilibrium form of NPV is widespread for valuation purposes (in the classical 

certainty-equivalent form), the disequilibrium form of NPV has its own upholders as well among scholars. 

For example, Lewellen (1977) uses the disequilibrium NPV to value projects; Copeland and Weston use 

cost-based betas and disequilibrium NPVs for valuing projects in various occasions (Copeland and Weston, 

1983, 1988, Weston and Copeland, 1988); Bossaerts and Ødegaard (2001) endorse the use of the 

disequilibrium NPV for valuing projects.  Some other authors are aware that the disequilibrium NPV is 

often used in finance, and warn against it claiming that this kind of NPV is a common misuse of the NPV 

rule: Ang and Lewellen (1982, p. 9) explicitly claim that the disequilibrium NPV is the “standard 

discounting approach” in finance for valuing projects, and show that such a method is incorrect for it leads 

to nonadditive valuations. Grinblatt and Titman (1998), being aware that the use of disequilibrium NPVs is 

extensive,  present an example where cost-based betas are used (see their example 10.5) and claim that 

their example deliberately shows an incorrect procedure. Ekern (2006) distinguishes between NPV as a 

decision rule and NPV as a valuation tool; he states that the disequilibrium NPV is correct for decision but 

not for valuation, and suggests the use  of the equilibrium NPV as well as other several equivalent methods. 

Magni (2007b) focuses on the relation between disequilibrium NPV and absence of arbitrage, showing that 

while deductively valid as a decision tool, the former is incompatible with the latter. 

 This paper, limiting its scope to one-period projects and accept-reject situations, aims at giving 

some clarification on these topics. In particular it shows that three conceptual categories are involved when 

the CAPM is used for capital budgeting: equilibrium/disequilibrium, present/future, decision/valuation. 

The results obtained inform that if the CAPM assumptions are met in the security market and a firm’s 

objective is to maximize share price, the investor may reliably employ either present of future values, either 

in equilibrium or disequilibrium format, as long as the resulting values are used for decision-making 

purposes. If, instead, the purpose is valuation, only the disequilibrium NFV and the equilibrium NPV may 

be used, because the disequilibrium NPV and the equilibrium NFV are not additive. However, even the 

equilibrium NPV and the disequilibrium NFV, though additive, have some pitfalls. If there is a state of 

nature for which they are decreasing functions with respect to the end-of-period cash flow, then valuation 

is unreliable. This result is just the capital-budgeting version of a result found in Dybvig and Ingersoll 
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(1982) concerning asset pricing in complete markets, and explains why the equilibrium value of a project is 

not always the price it would have if it were traded in the security market. 

 

The paper is structured as follows. In section 1 definitions of net present values and net future values, in 

either equilibrium or disequilibrium format, are given. In section 2 four decision criteria are formally 

deducted assuming that the CAPM assumptions are met. In section 3 the equilibrium NPV and the 

disequilibrium NFV are shown to be additive, whereas the disequilibrium NPV and the equilibrium NFV 

are shown to be nonadditive. Section 4 shows that additivity does not guarantee absence of arbitrage and 

that the two additive measures previously found may be in some cases misleading. Section 5 shows that the 

equilibrium value of a project is not necessarily the value a project would have if it were traded in the 

security market. Some remarks conclude the paper. 

Equilibrium in the security market is assumed throughout the paper, unless otherwise specified. 

Main notational conventions are placed in Table 0. 

 

1. Equilibrium and disequilibrium, present and future 

 

This section introduces the notions of Net Present Value (NPV) and Net Future Value (NFV) and shows 

that, under uncertainty, they are not univocal. 
 

 Under certainty, Net Present Value and Net Future Value are equivalent notions. The NPV of a 

project Z with cost IZ  and end-of-period cash flow FZ  is given by 

i
FI Z

ZZ +
+−=

1
NPV        (1.1) 

where i is the (opportunity) cost of capital. The NFV of project Z is just the NPV compounded at the cost 

of capital: 

ZZZZ FiIi ++−=+= )1()1(NPVNFV .    (1.2) 

As 1/ −= ZZZ IFr  is the project rate of return, the NFV may be rewritten in excess-return form: 

 

ZZZ irI NFV)(return excess =−= .     (1.3) 

    

Therefore, the NPV is just the present value of the project excess return, calculated at the cost of capital: 

i
irI ZZ

Z +
−

=
1

)(NPV  .       (1.4) 

Under certainty, the NPV is the current project (net) value, the NFV (excess return) is the end-of-period 

project (net) value. In terms of decisions, the NPV and the NFV have the same sign (as long as (1+i) > 0) 

so that a project is worth undertaking if and only if the NPV and the NFV are positive. The NPV and NFV 

are twin notions: both may interchangeably be used as decision rules and valuation tools. 
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Under uncertainty, if the CAPM is used for measuring risk, the notions of NPV and NFV are not univocal. 

Depending on whether disequilibrium covariance terms or equilibrium covariance terms are used, we find 

disequilibrium or equilibrium NPVs and NFVs. We then give the following definitions: 

 

Definition 1.1. The disequilibrium NPV (dNPV) is the net discounted expected cash flow, where the 

discount rate is the disequilibrium (cost-based) rate of return of the project ZmZf
d
Z IrFrr /),cov(λ+= : 

   Z
mZ

Z
f

Z
Z I

,rF
I
λR

F
−

+
=

)(cov
:dNPV .    (1.5) 

The first addend is the disequilibrium value of the project, so that Z
d

ZZ IV −=:dNPV .  

 

Definition 1.2. The equilibrium NPV (eNPV) is the net discounted expected cash flow, where the discount 

rate is the equilibrium rate of return e
ZmZf

e
Z VrFrr /),cov(λ+=  (with e

ZV  being the equilibrium value 

of the project):  

 

Z
mZe

Z
f

Z
Z I

,rF
V
λR

F
−

+
=

)(cov
:eNPV .    (1.6) 

As widely known, we have ( ) fmZZ
e
Z R,rFλFV /)(cov: −=  so that we may alternatively reframe the 

eNPV in a certainty-equivalent form 

Z
f

mZZ
Z I

R
,rFλF

−
−

=
)(cov:eNPV     (1.7) 

 

 

Using eq. (2.1) we give the following  

Definition 1.3. The disequilibrium NFV (dNFV) is given by the compounded disequilibrium Net Present 

Value: )/),cov((dNPV)1(dNPVdNFV ZmZfZ
d
ZZZ IrFRr λ+=+= . Therefore, we may write, in an 

excess-return format, 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=−=

Z

mZ
fZZ

d
ZZZZ I

rF
rrIrrI

),cov(
:dNFV

λ
    (1.6) 
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Definition 1.4. The equilibrium NFV (eNFV) is  given by the compounded eNPVZ: 

)1(eNPVeNFV e
ZZZ r+= . Therefore, we may write, in an excess-return format, 

 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−=−= e

Z

mZ
fZZ

e
ZZZZ

V
rF

rrIrrI
),cov(

eNFV
λ

   (1.9) 

 

or, using the relation ZZZZ IrIF =− , 

 

Ze
Z

mZ
fZZZ I

V
rF

rIF ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−−=

),cov(
)(eNFV

λ
.  (1.10) 

 

Remark 1.1 It is worth reminding that the project’s expected rate of return differs from both the 

disequilibrium rate of return and the equilibrium rate of return. For the sake of clarity, the three rates of 

return may be written as 

 

  

1−=
Z

Z
Z I

Fr       expected rate of return   (1.11) 

Z

mZ
fd

Z

Zd
Z

I
rF

r
V
Fr

),cov(
1

λ
+=−=    disequilibrium rate of return  (1.12) 

e
Z

mZ
fe

Z

Ze
Z

V
rF

r
V
F

r
),cov(

1
λ

+=−=    equilibrium rate of return  (1.13) 

 

(see also Weston and Chen, 1980, p. 12). The disequilibrium rate of return in (1.12) is the risk-adjusted 

cost of capital introduced in the classical contributions cited above (see Rubinstein, 1973, and Magni, 

2007a). Using (1.11)-(1.13), Table 1 collects various ways of representing NPVs and NFVs, in either 

equilibrium or disequilibrium format, which are equivalent to those presented in Definitions (1.1)-(1.4) 

above.1  

 The following section shows that the proliferation of measures under uncertainty, while surprising, 

is harmless in accept-reject decisions, for all of them are validly deducted by the CAPM and the 

assumption of share price maximization.  

 

                                                 
1 It is worth reminding that if the project lies on the Security Market Line (SML), then e

Z
d

ZZ VVI ==  and 
e
Z

d
ZZ rrr == , i.e. the three notions of rate of return collapse into one. 
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2. The four decision rules 

 

This section shows that the four indexes above introduced are logically equivalent as decision rules in 

accept-reject situations. To begin with, we have the following 

 

Lemma 2.1 Suppose all CAPM assumptions are met, and a firm l has the opportunity of undertaking a 

project Z that costs ZI  and generates the end-of-period payoff ZF . Then, after acceptance of the project, 

 

.)()(cov lllfmZZfZ PPNR,rFλIRF −=−− o     (2.1) 

 

Proof: Consider firm l. Before acceptance of the project, we have, due to the Security Market Line, 

)(cov mlfl ,rrλrr += . 

Reminding that lll VFr /1 =+ , we have 

)(cov mlf
l

l ,rrλR
V
F

+=  

and, multiplying by the firm value lV , we obtain 

).(cov)(cov mlllfmllfl ,rFλPNR,rFλVRF +=+=    (2.2) 

After acceptance of the project, the new equilibrium value is set as  

f

mZlZl
l R

,rFFλFF
V

)(cov +−+
=o . 

The existing shares are lN , so the new resulting price o
lP  is such that oo

llZl PNIV =− , which 

determines 
l

Zl
l N

IV
P

−
=

o
o . To actually make the investment the firm shall issue 

o

o

l

Z
l

P

I
N =  shares at the 

price o
lP .  The Security Market Line is now such that 

  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
+=

+
m

l

Zl
f

l

Zl ,r
V

FF
λR

V
FF

oo
cov  

whence 

)(cov mZllfZl r,FFλVRFF ++=+ o . 

 

Having determined the new price o
lP  and the number o

lN of stocks issued, the latter boils down 
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)(cov)( mZllllfZl ,rFFλPNNRFF +++=+ oo .    (2.3) 

Subtracting (2.3) from (2.2) we get to 

 

)(cov)()(cov mZllllfmlllfZ ,rFFλPNNR,rFλPNRF +−+−+=− oo  

and, using Zll IPN =oo , 

.)()(cov lllfmZZfZ PPNR,rFλIRF −=−− o  

Q.E.D. 

 

From Lemma 2.1, four decision rules are deducted. In particular, we have the following 

 

Proposition 2.1 Suppose all CAPM assumptions are met, and a firm l has the opportunity of undertaking a 

project Z that costs ZI  and generates the end-of-period payoff ZF . The firm’s share price increases if 

and only if the project disequilibrium Net Present Value is positive: 2  

 

0
)(cov

:dNPV >−
+

= Z
mZ

Z
f

Z
Z I

,rF
I
λR

F
.     (2.4) 

 

Proof: From eq. (2.1) we find 

).(cov lllfm
Z

Z
fZZ PPNR,r

I
FλRIF −=⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+− o  

 

whence 

.
cov

)(

cov ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
=−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ m

Z

Z
f

lllf
Z

m
Z

Z
f

Z

,r
I
F

λR

PPNR
I

,r
I
F

λR

F o

 

Therefore, 

 

ll PP >o  if and only if 0dNPV >=− ZZ
d

Z IV . 

Q.E.D. 

                                                 
2 It is assumed that fR  and ( )mZZf ,rFIλR cov)/(+  have equal sign. If this condition is not met, the thesis 

holds with the sign of (2.4) reversed. 
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Proposition 2.2 Suppose all CAPM assumptions are met, and a firm l has the opportunity of undertaking a 

project Z that costs ZI  and generates the end-of-period payoff ZF . The firm’s share price increases if 

and only if the project equilibrium Net Present Value is positive: 

 

0
)(cov

:eNPV >−
+

= Z
mZe

Z
f

Z
Z I

,rF
V
λR

F
.    (2.5) 

Proof: Using eq. (2.1) and the fact that e
ZfmZZ VR,rFλF =− )(cov , we have 

)( lllfZf
e
Zf PPNRIRVR −=− o  

whence, dividing by fR , 

)(eNPV lllZ PPN −= o .     (2.6) 

Finally, we have 

ll PP >o  if and only if 0eNPV >Z . 

Q.E.D. 

 

Proposition 2.3 Suppose all CAPM assumptions are met, and a firm l has the opportunity of undertaking a 

project Z that costs ZI  and generates the end-of-period payoff ZF . The firm’s share price increases if 

and only if the project disequilibrium Net Future Value is positive: 

 

( ) 0dNFV >−= d
ZZZZ rrI      (2.7) 

 

Proof: From eq. (2.1) we have 

)())(cov( lllfmZfZZ PPNR,rrλRIF −=+− o .   (2.8) 

Given that  

))(cov()(dNFV mZfZZ
d
ZZZZ ,rrλRIFrrI +−=−=    (2.9) 

 

we have 

 

ll PP >o  if and only if 0dNFV >Z . 

Q.E.D. 
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Proposition 2.4. Suppose all CAPM assumptions are met, and a firm l has the opportunity of undertaking a 

project Z that costs ZI  and generates the end-of-period payoff ZF . The firm’s share price increases if 

and only if the project equilibrium Net Future Value is positive:3 

 

( ) 0eNFV >−= e
ZZZZ rrI .     (2.10) 

 

Proof: Using eq. (2.1) and the equalities )1/()(cov e
ZZf

e
ZfmZZ rFRVR,rFλF +==− , we have 

 

)(
)1(

lllfZfe
Z

Z
f PPNRIR

r
FR −=−
+

o  

 

and therefore 

)()1()1( lllf
e
ZZ

e
ZffZ PPNRrIrRRF −+=+− o . 

whence, dividing by fR , 

)()1()1( lll
e
Z

e
ZZZ PPNrrIF −+=+− o  

which leads to 

ll PP >o  if and only if 0eNFV >Z . 

Q.E.D. 

 

Remark 2.1 Propositions 2.1-2.4 show four ways of using the CAPM for capital budgeting purposes. All 

of them are CAPM-consistent. In particular, it is worth stressing that: (a) the disequilibrium NPV is indeed 

a correct decision rule, despite some claims against its use (e.g. De Reyck, 2005); (b) the Net Present Value 

rule may be safely replaced by a Net Future Value (excess return) rule, either in equilibrium or 

disequilibrium format. 

 

Remark 2.2 The results obtained have some practical consequences. In real life, investors face several 

different situations in capital budgeting. In particular, information about the project may be extensive or 

partial so that project analysis may or may not rely on a scenario basis, and there may or may not be assets 

in the security market having economic characteristics similar to those of the project under consideration 

(representative assets). If appropriate information on the project is available (so that scenario analysis is 

possible) and/or there are not representative assets in the market, the investor must rely on an ex ante 

probability distribution to compute the covariance between the end-of-period cash flow and the market 

                                                 
3 It is here assumed )1( e

Zr+ >0. If this condition is not met, then the thesis holds with the sign of (2.10) reversed. 
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return, ZmZ I,rF )/(cov ; this means that he will equivalently employ the disequilibrium NPV or the 

disequilibrium NFV to decide whether investing or not in the project. If appropriate information is 

somehow lacking and there are representative assets in the security market, the decision maker may 

measure the covariance from historical return data of representative assets. The covariance so obtained is a 

proxy for the equilibrium covariance e
ZmZm

e
Z V,rF,rr )/(cov)(cov =  (assuming the market is in 

equilibrium)4 and the investor will therefore employ the equilibrium NPV or the equilibrium NFV. In both 

cases the decision maker is reliably supported by a pair of metrics that lead to correct decisions. 

  

3. Nonadditivity 

 

This section shows that the disequilibrium NFV and the equilibrium NPV are additive, whereas the 

disequilibrium NPV and the equilibrium NFV are nonadditive. NPV additivity means 

 

2121
NPVNPVNPV Z ZZZ +=+   for any pair of projects Z1, Z2   (3.1) 

 

(analogously for the NFV). Therefore, to show nonadditivity it suffices to provide a counterexample, i.e. a 

pair of projects (or a class of pairs of projects) for which eq. (3.1) does not hold. 

 

Proposition 3.1 The disequilibrium NPV is nonadditive. 

 

Proof: Consider a pair of projects Z1 and Z2 such that Z1= ),( kh−  and Z2= ),( kFhI ZZ −+−  with h, k 

being any nonzero real numbers (note that Z= Z1 + Z2). Consider the function 

 

48476
444444 8444444 76

2Z
1Z

dNPV
dNPV

)(
),(cov

)(:),( ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−+

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
+

−
+−−=

f

Z

mZ
f

Z
Z R

kh

hI
rFR

kFhIkhf
λ

. 

 

If the disequilibrium NPV were additive, then eq. (3.1) would hold and ),( khf  would be constant under 

changes in h and k  (in particular, we would have ),( khf = )0,0(f =dNPVZ  for all h, k). But 

 

                                                 
4 If the market is not in equilibrium, the historical covariances are not proxies for the equilibrium covariances and one 
must relies on the previous method (disequilibrium covariance); however, in this case one should actually wonder 
whether the CAPM should be applied, given that equilibrium is a fundamental assumption of the model. This issue is 
an important practical problem but is beyond the scope of this paper. 
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2)],(cov)([
)(),(cov),(

mZZf

ZmZ

rFhIR
kFrF

h
khf

λ
λ

+−

−
−=

∂
∂

 

 

)(
),(cov

11),(

hI
rF

RRk
khf

Z

mZ
f

f
−

+
−=

∂
∂

λ
 

which, in general, are not identically zero; therefore ),( khf  is not invariant with respect to h and k. 

Q.E.D. 

 

Proposition 3.2 The equilibrium NPV is additive. 

 

Proof: Consider any pair of projects Z1 and Z2, with 1ZI  and  2ZI  being the respective outlays, while 1ZF  

and 2ZF  are the respective end-of-period outcomes. Let 21: ZZZ III +=  and 11: ZZZ FFF += . Using the 

certainty-equivalent form of the equilibrium NPV (see eq. (1.7)) we have 

 

ZZ
f

mZZ

Z
f

mZZ
Z

f

mZZ
ZZ

I
R

rFF

I
R

rFF
I

R
rFF

eNPV),cov(

),cov(),cov(
eNPVeNPV 2

22
1

11
21

=−
−

=

−
−

+−
−

=+

λ

λλ

 

Q.E.D. 

 

 

Proposition 3.3. The disequilibrium NFV is additive. 

 

Proof: Reminding that )1(dNFV d
ZZZZ rIF +−=  (see Table 1) we have 

Z

mZZfZZ

ZmZ
Z

ZfZZmZ
Z

ZfZZZ

rFIrIF

IrF
I

IRFIrF
I

IRF

dNFV

),cov()(

)),cov(()),cov((dNFVdNFV
22

2
2211

1
1121

=

−−−=

−−+−−=+

λ

λλ

 

Q.E.D. 
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Proposition 3.4. The equilibrium NFV is nonadditive. 

 

Proof:  Consider a pair of projects Z1 and Z2 such that Z1= ),( kh−  and Z2= ),( kFhI ZZ −+−  with h, k 

being any nonzero real numbers (note that Z= Z1 + Z2). Taking into consideration eq. (1.10) and reminding 

that 0),cov( =mrk  for all Rk ∈ , consider the function  

( )
4484476

44444444444 844444444444 76
2Z

1

1

eNFV

eNFV

)(
),cov(

)()(),( hrhkhI
V

rkF
rhIkFkhg fZe

Z

mZ
fZZ

Z

−−+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
+−−−−=
λ

. 

Manipulating algebraically, we find 

e
Z

ZmZ
ZfZ

V
h))(I,r(Fλ

IRFkhg
1

cov
),(

−
−−=  

with 

f

mZZe
Z

e
Z R

)k,r(FλkF
kVV

−−−
==

cov
)(

11
 

so that  

)(

),cov(),(

1
kV

rF
h

khg
e
Z

mZλ
=

∂
∂

 

[ ]2)(

))(,cov(),(

1
kVR

hIrF
k

khg
e
Zf

mZ −
−=

∂
∂ λ

 

which, in general, are not identically zero. 

Q.E.D. 

Table 2 summarizes the results obtained, showing that additivity is, so to say, two-dimensional, depending 

on the two pairs equilibrium/disequilibrium and present/future. 

 

Table 3 illustrates a numerical example where a decision maker is supposed to be evaluating two risky 

projects. The security market is composed, for the sake of simplicity, of a single risky security (so that its 

rate of return coincides with the market rate of return mr ); one of three states of nature may occur with 

probabilities equal to 0.4, 0.3, 0.4 respectively. The risk-free security has a face value of 120 and a price of 

90. The risk-free rate is therefore 33.33% (=120/90-1). To compute the four net values, we use eqs. (1.5) 

(dNPV) and (1.7) (eNPV), while the dNFV (eq. (1.8)) and the eNFV (eq. (1.9)) are found by multiplying 

the former by )1( d
Zr+   and the latter by )1( e

Zr+  (eqs. (1.12) and (1.13)). Consistently with the 

Propositions above, the sum of the dNPVs (eNFVs) of the two projects is not equal to the dNPV (eNFV) of 

the project obtained by summing the two projects’ cash flows. Conversely, the eNPV and the dNFV are 
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additive, which confirms the economic interpretation of these indexes as valuation tools: eq. (2.6) just 

represents the eNPV as the price increase times the number of shares outstanding, which exactly measures 

the increase in shareholders’ wealth if project is undertaken. 

  

Remark 3.1 It is worth noting that the the dNFV and the eNPV are risk-free-related, so to say, in the sense 

that the equilibrium Net Present Value is just the discounted value of the disequilibrium Net Future Value, 

where the discount rate is the risk-free rate of the security market: 
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Referring to the example of Table 3 and, in particular, to projects Z1  and Z2, we have 6.41=8.55/1.3333 and 

9.66=12.88/1.3333.) This fact may be interpreted in  an arbitrage perspective. Suppose a shareholder owns 

n shares of the firm; before acceptance of the project the value of his portfolio is lnP , after acceptance it 

becomes o
lnP . Suppose he sells m shares, with oo

lll PPPnm /)( −= ; then the value of his investment in 

the firm gets back to lll nPmPnP =− oo as before acceptance of the project. If he invests the proceeds at 

the risk-free rate, he will have, at the end of the period, a certain amount equal to  

 

dNFV)()( ⎟⎟
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⎞
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⎛
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where we have used eq. (2.6)  and eq. (3.2). By undoing the increase in the firm value, the investor will 

assure himself an arbitrage profit equal to that part of the dNFV corresponding to his investment in the 

firm. To put it differently, the dFNV is the (total) arbitrage profit shareholders get at the end of the period if 

the project is undertaken. 

 

Remark 3.2  The dNPV and the eNFV may only be used as decision rules.5 However, nonadditivity has 

something to do with decision as well. Given an investment, eq. (2.4) does hold, but dealing with two 

investments to be both accepted or rejected (or an investment composed of two sub-investments), one may 

not deduce that the portfolio of the two projects is profitable if the sum of the two NPVs is positive. In 

other words, before applying eq. (2.4), one must first consider the overall cash flows deriving from the two 

investments, and only afterwards compute the NPV. To calculate the NPV of each investment and then 

sum the NPVs is not compatible with Proposition 2.1. This boils down to saying that the disequilibrium 

NPV is dangerous if used for decision purposes, because decision makers coping with two or more projects 
                                                 
5 Given that the disequilibrium Net Present Value and the equilibrium Net Future Value are not valuation tools, to use 
the term “value” for labelling them is admittedly improper. 
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(or a single project that is composed of several sub-projects) may be tempted to first compute the NPV of 

each project and then sum the NPVs. This procedure may lead to a different sign than the one obtained 

with the correct procedure. It is easy to show that there may be instances where the sign of 

21 ZNPVNPV +Z does not coincide with the sign of 
21

NPV ZZ + : consider again the example in Table 3 

and suppose the cost of project Z2 is equal to 48 (other things unvaried). A simple calculation shows that 

029.2)86.5(15.8dNPVdNPV
21 Z >=−+=+Z  while 084.1dNPV

21
<−=+ZZ  (i.e. this portfolio 

of projects is profitable or not depending on how the investor computes the overall NPV).  

 The same remarks obviously hold for the equilibrium NFV. For example, if one sets the cost of 

project Z2 at 45 euros (other things unvaried) we have 

089.3)77.10(88.6eNFVeNFV
21 Z <−=−+=+Z  and 05.1eNFV

21
>=+ZZ . 

 

4. Decreasing net values and project valuation 

 

The previous sections have shown that the eNPV and the dNFV are legitimately deducted from the CAPM 

not only as decision rules but also as valuation tools. In other words, they provide the project value (current 

and future respectively). This section shows that, despite their additivity, the eNPV or dNFV may be 

misleading in some cases. 

 Consider a project whose random end-of-period payoff is RF k
Z ∈  if state k occurs, k=1, 2, …, n.  

The project disequilibrium NFV and the project equilibrium NPV may be represented as functions of n 

variables: 
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where pk is the probability of state k. For functions (4.1) and (4.2) to provide correct (net) values, they must 

abide by the no-arbitrage principle. In other words, increasing end-of-period cash flows should lead to 

increasing values, ceteris paribus. Consider two assets Z and W that may be purchased at the same price. 

Suppose k
W

k
Z FF =  for all k but s, with s

W
s

Z FF < . Asset W  may then be seen as asset Z plus an arbitrage 

profit paying off nonnegative amounts in all states and a strictly positive amount ( s
Z

s
W FF − ) in state s. 

Asset W’s value must therefore be higher than asset Z’s, otherwise arbitrage opportunities arise.6 From a 

capital budgeting perspective, given a determined eNPV and dNFV for project Z, project W must have 

higher eNPV and dNFV (assuming their costs are equal), which boils down to 0dNFV >
∂

∂
k

ZF
 and 

0eNPV >
∂

∂
k

ZF
 for every k=1, 2, … , n. If, instead, the project under consideration is such that  

0dNFV <
∂

∂
s

ZF
  and  0eNPV <

∂

∂
s

ZF
 for some s    (4.3) 

the dNFV and the eNPV do not provide a reliable valuation, because they are inconsistent with the no-

arbitrage principle. From eq. (4.1) we have that 
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and, owing to eq. (3.2), 
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with  rmk being the market rate of return if state k occurs. Therefore, we may write 

 

smmssss
Z

prrpp
F

λλ +−=
∂

∂ dNFV   and  fsmmssss
Z

Rprrpp
F

/)(eNPV λλ +−=
∂

∂
. (4.8) 

                                                 
6From a stochastic dominance perspective, note that asset W dominates Z according to both first-order and second-
order stochastic dominance). 
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Let us now consider project Z in Table 4. Considering its dNFV and eNPV as functions of 3
ZF  (end-of-

period cash flow if state 3 occurs) and using eq. (4.8), we find that condition (4.3) is satisfied for s=3:  

0)6259.08518.0)(3.0(52.43.0dNFV
3

<−−=
∂

∂

ZF
 

[ ] 0)6259.08518.0)(3.0(52.43.0
3333.1
1eNPV

3
<−−=

∂

∂

ZF
. 

This means “the more the payoff, the less the value”, which is incompatible with an arbitrage-free 

evaluation. Note that project Z may be seen as the risky security plus an arbitrage profit that pays off 

nonnegative cash flows in all states and a strictly positive amount of 250 if state 3 occurs.7  Therefore, 

project Z must have a higher (net) value than the risky security. Given that the net values of the risky 

security are zero (for the risky security lies on the SML), project Z’s net values must be positive. Both first-

order and second-order stochastic dominance confirm the natural intuition according to which Z dominates 

the risky security. Yet, both the equilibrium NPV and the disequilibrium NFV are negative. They signal 

nonprofitability for project Z (the equilibrium value is 52.808, smaller than the cost) or, equivalently, they 

do not signal that the project gives the investor an arbitrage opportunity. This means that, if the dNPV and 

the eNFV are not additive, the eNPV and the dNFV have pitfalls as well, even though they are additive.  

 

This enables us to state the following  

Proposition 4.1. Suppose that  

(a) the security market is in equilibrium 

(b) condition (4.3) holds, i.e. 0dNFV <
∂

∂
s

ZF
  and  0eNPV <

∂

∂
s

ZF
 for some s 

Then, the eNPV and the dNFV may not be used for valuation (nor decision) purposes. 

 

Proposition 4.1 bears relation to a previous result found by Dybvig and Ingersoll (1982, p. 237). The 

authors, dealing with pricing of marketed assets in a complete market, prove the following: 

 

Dybivg and Ingersoll’s Proposition (DIP). 

Suppose that 

 (i) mean-variance pricing holds for all assets, that is, )cov( mlfl ,rrλrr =−  with 0, >λrf  

 (ii) markets are complete so that any payoff across states can be purchased as some  portfolio 

of marketed securities; and  

                                                 
7 It is possible to set the project’s cost lower than the risky security’s price, so that the arbitrage becomes a strong 
arbitrage, with a positive net cash flow at time 0 and nonnegative amount (possibly positive) at time 1. 
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 (iii) the market portfolio generates sufficiently large returns in some state(s), that is, 

 0)/1( prob >+> λrr mm . 

Then there exists an arbitrage opportunity. 

 

Remark 4.1 It is worth noting that condition (b) of Proposition 4.1 is equivalent to Dybvig and Ingersoll’s 

condition (iii), because 0)/1( prob >+> λrr mm  if and only if λrr mms /1+>  for some s, which means 

1)( >− mms rrλ  for some s, and, owing to eq. (4.8) and the fact that ps > 0 and Rf > 0, the latter holds if and 

only if 0dNFV <
∂

∂
s

ZF
 and 0dNFV <

∂

∂
s

ZF
 for some s.8 As a result, the two assumption (a) and (b) in 

Proposition 4.1 imply that the market is not complete. To understand why, consider that if the market were 

complete and (b) held, then condition (ii) and (iii)  of DIP would hold. But then the market would not be in 

equilibrium, otherwise arbitrage opportunities would arise (see Dybvig and Ingersoll, 1982, p. 238). 

Therefore assumptions (a) and (b) are only compatible with an incomplete market. 

 

The result presented in Proposition 4.1 is, so to say, the capital-budgeting counterpart of DIP. In particular, 

while the latter deals with pricing of marketed assets when the security market is complete, the former 

deals with valuation of nonmarketed assets (projects) when the security market is incomplete. The two 

Propositions are the two sides of the same coin and the two perspectives are perfectly reconciled (see Table 

5).  

 

5. Equilibrium value and counterfactual equilibrium price 

 

This section shows that the equilibrium value of a project is not necessarily the value the project would 

have if it were traded.  

 Let us consider eq. (1.7) in section 1 above. It says that the eNPV is just the difference between the 

equilibrium value and the cost of the project: Z
e
Z IV −=eNPV  where 

 
f

mZZe
Z R

rFF
V

),(covλ−
= .     (5.1) 

In finance, e
ZV  is known as the “equilibrium value” of the project. It is commonly believed that it is the 

price the project would have in equilibrium if it were traded in the security market (e.g. Mason and Merton, 

1985, pp. 38-39, Smith and Nau, 1995, p. 800).  But this equivalence does not always hold, as Smith and 

Nau (1995) clearly point out: 

                                                 
8 The implicit assumption is that 0>λ . If not, the two conditions are not equivalent. In our particular case described 
in Table 4, we have  102.1)6259.08518.0(52.4)( 3 >=−=− mm rrλ . 
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 We also have some semantic problems defining exactly what is meant by the value of a non-traded 

 project. Earlier the … value of a project was defined as the price the project would have  if it were 

 traded in an arbitrage-free market …. This definition does not work well in general because the 

 introduction of the project into the market may create new investment opportunities and change  the 

 prices of the traded securities. (Smith and Nau, 1995, p. 804, footnote 7) 

 

Let us call “counterfactual equilibrium price” the price the project would have if it were traded: we now 

illustrate a counterexample where the equilibrium value e
ZV  differs from the counterfactual equilibrium 

price. Let us consider project Z introduced in Table 4. What if one counterfactually assumes that Z  is 

traded in the security market?9 First of all, note that the introduction of the project in the security market 

renders the latter a complete market. It is thus evident that project Z’s counterfactual equilibrium price 

cannot coincide with the equilibrium value 808.52=e
ZV  previously found, otherwise conditions (i)-(iii) of 

DIP would be satisfied, and arbitrage opportunities would arise (which implies that the market would not 

be in equilibrium). This means that when the project is introduced in the security market, market prices 

shift so that the market moves toward a new equilibrium. How does the resulting new equilibrium turns out 

to be? Intuition would tell us that the risky security’s price should decrease to avoid arbitrage (given that 

the project dominates it), but this is not the case. It is easy to verify that, to avoid condition (iii) of DIP and 

achieve an equilibrium, the risky security’s price must increase and project Z’s equilibrium price must 

increase to a larger extent so as to be greater than the risky security’s price.10 Suppose the new equilibrium 

is as represented in Table 6.  The (counterfactual) equilibrium price of project Z is 121.57 and the price of 

the risky security is now 65.76.  The market is now complete and arbitrage is not possible. The 

counterfactual equilibrium price of the project differs from the equilibrium value of the project 

(121.57≠ 52.808). The conclusion is that the equilibrium value in eq. (5.1) is not the price the project 

would have if it were traded in the market. Contrary to the equilibrium value, the counterfactual 

equilibrium price is rational by definition, in the sense that arbitrage is not possible in the resulting 

equilibrium. This means that the counterfactual equilibrium price is obviously the correct value of the 

project. 

 One might think that, for valuation to be correct, one should replace the equilibrium value with the 

counterfactual equilibrium price. Unfortunately the counterfactual equilibrium price cannot be univocally 

determined. Table 7 shows another possible equilibrium for the market where project Z is traded. The 

equilibrium counterfactual price in this second equilibrium is equal to 76.197, which not simply conflicts 

with the equilibrium value of the project, but differs form the counterfactual equilibrium price previously 

found. Which one of the two counterfactual equilibrium prices is the one to be used for valuation? The 

                                                 
9 This assumption is equivalent to the assumption that a security with the same payoff as project Z is traded in the 
market. 
10 This result holds regardless of the number of shares of project Z (or of the security having the same payoff as Z) 
that are traded in the market. 
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answer is not possible, because there is no way of anticipating how equilibrium is reached from a 

disequilibrium situation. That is, one cannot compute ex ante “the” equilibrium price the project would 

have if it were traded in the security market. However, from a practical point of view, one may collect 

statistical data and make an ex ante estimation of the most probable equilibrium the market would reach. In 

this case, the estimated counterfactual equilibrium price could be taken as the correct project value.11 

 

Remark 5.1 Proposition 4.1 just gives us the reason why the equilibrium value may sometimes turn out to 

be incorrect. The correct value measuring increase in shareholders’ wealth is indeed given by the 

equilibrium value if the market is complete and in equilibrium. Problems in project valuation arise only 

when the market is not complete and condition (4.3) holds.12 In this case, equilibrium value and 

counterfactual equilibrium price are not equal.  A project’s equilibrium value is therefore reliable only if 

the market is complete; in this case it does represent the (counterfactual) equilibrium price that the project 

would actually have if it were traded. 

 

 

Conclusions 

 

The CAPM is a theoretical model aimed at valuing financial assets in a security market under the 

assumption that the market is in equilibrium. As widely known, the CAPM may also be used for capital 

budgeting purposes: a project is worth undertaking if and only if the project expected rate of return is 

greater than the (cost-based) risk-adjusted cost of capital (Rubinstein, 1973).  However, the role of this 

simple capital budgeting criterion has not been thoroughly investigated, so that errors and 

misunderstanding often arise in financial textbooks and papers, where the CAPM is incorporated in the net 

present value criterion in an unclear way, with no explicit indication of  

o the way it should be computed (use of disequilibrium data versus equilibrium data), 

o the purpose it serves (decision or valuation) 

o the relation excess return (net future value) bears to present value. 

This paper, focusing on accept-reject situations and one-period projects,  is just a first step toward a 

clarification of these issues. In particular, it shows that: 

 

                                                 
11 From a theoretical point of view, upper and lower bound can be computed for the counterfactual equilibrium price 
(Smith and Nau, 1995), but whenever the cost is greater than the lower limit and smaller than the upper limit, the 
“optimal strategy is unclear”(Smith and Nau, 1995, p. 805), and decision is not possible (a further analysis must be 
conducted to reach a single estimated value). 
12 It is worth reminding that if the market is complete and in equilibrium, condition (4.3) may not hold (given that the 
equivalent condition (iii) of DIP may not hold). Conversely, if the market is not complete and in equilibrium, 
condition (4.3) may hold, as we have seen. 
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• from the CAPM four decision rules are validly deducted: the disequilibrium Net Present Value, the 

equilibrium Net Future Value, the equilibrium Net Present Value, the disequilibrium Net Future 

Value. All of them may be interchangeably used for decision-making 

• only the equilibrium NPV and the disequilibrium NFV are additive, which means that they may be 

used for valuation purposes. The other two are not valuation tools 

• while logically impeccable as decision tools, the disequilibrium NPV (equilibrium NFV) may lead 

to incorrect decisions if decision makers facing a portfolio of several projects (or a project 

composed of several sub-projects) separately compute each project’s NPV (NFV) and then sum the 

values obtained. The correct procedure is: to sum the cash flows of the projects and then compute 

the NPV (NFV) 

• even if the market is in equilibrium, the project’s equilibrium NPV and disequilibrium NFV lead to 

an incorrect valuation whenever they are decreasing functions with respect to end-of-period cash 

flow in some state of nature (which implies that the security market is incomplete). This result is 

the capital-budgeting equivalent of Dybvig and Ingersoll’s (1982) result, which they find under the 

assumption of a complete market 

• if the above stated condition holds, the correct value would be given by the (counterfactual) 

equilibrium price the project would have if it were traded in the security market. Unfortunately, 

this price is not univocally determined ex ante and one can only rely on an estimated equilibrium 

price based on exogenous data about the market. 
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Table 0. Main Notational Conventions 

)( jj FF  
 

Asset j’s end-of-period random (expected) cash flow 

 

jI  Cost of project j 

)( jj rr  Asset j’s random (expected) rate of return 

)( d
j

e
j VV  Equilibrium (disequilibrium) value of asset j 

d
Zr  

Disequilibrium (cost-based) rate of return of project Z (aka risk-adjusted cost 

of capital) 

e
Zr  Equilibrium rate of return of project Z 

)( ff Rr  Risk-free rate (1+risk-free rate) 

2
mσ  Variance of the market rate of return 

cov Covariance 

2:
m

fm rr

σ
λ

−
=  Market price of risk 

)( o
ll PP  Price of firm l’s shares before (after) acceptance of the project 

lN  Number of firm l’s outstanding shares 

o
lN  Additional shares issued at price o

lP  to finance the project  

lV  ( o
lV ) Firm value before (after) acceptance of the project 

dNPVj Disequilibrium net present value of project j 

eNPVj Equilibrium net present value of project j 

dNFVj Disequilibrium net future value of project j 

eNFVj Equilibrium net future value of project j 

j=Z, Z1, Z2, l, m
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Table 1. Equilibrium and disequilibrium net values 
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Table 2. Additive and nonadditive net values 

 
Equilibrium Disequilibrium 

Net Present Value Additive Nonadditive 

Net Future Value Nonadditive Additive 
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Table 3. Project valuation with the CAPM 

 

 Proj. Z1 Proj. Z2 Proj. Z1+ Z2 
Proj. Z1       

+Proj. Z2 

Risky 

security 

Risk-free 

security 

Market 

(3000 sh.) 

F  
⎪
⎩

⎪
⎨

⎧

10
100
130

 
⎪
⎩

⎪
⎨

⎧

80
50
120

 
⎪
⎩

⎪
⎨

⎧

90
150
250

  
⎪
⎩

⎪
⎨

⎧

100
71
98

 
⎪
⎩

⎪
⎨

⎧

120
120
120

 
⎪
⎩

⎪
⎨

⎧

300000
213000
294000

 

Cost/price 70 30 100  54 90 162000 

Rate of return 

(%) 

 

⎪
⎩

⎪
⎨

⎧

− 7.85
8.42
7.85

 

 

⎪
⎩

⎪
⎨

⎧

6.166
6.66

300
 

⎪
⎩

⎪
⎨

⎧

−10
50
150

  
⎪
⎩

⎪
⎨

⎧

18.85
48.31
48.81

 
⎪
⎩

⎪
⎨

⎧

3.33
3.33
3.33

 
⎪
⎩

⎪
⎨

⎧

18.85
48.31
48.81

 

F  82 80 162  87.8 120 263400 

r  (%) 17.14 166.66 62  62.59 33.33 62.59 

λ  4.52       

),cov( mrFλ  –19.88 27.12 7.23  15.8 0 47400 

),cov( mrFF λ−
 

82 80 162  87.8 120 263400 

Disequilibrium 

value 
78.15 35.75 115.25 113.9 54 90 162000 

Equilibrium 

value 
76.41 39.66 116.07 116.07 54 90 162000 

Disequilibrium 

NPV 
8.15 5.75 15.24 13.9 0 0 0 

Equilibrium 

NPV 
6.41 9.66 16.07 16.07 0 0 0 

Disequilibrium 

NFV 
8.55 12.88 21.43 21.43 0 0 0 

Equilibrium 

NFV 
6.88 19.49 22.44 26.37 0 0 0 
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Table 4. Decreasing net values 

 

 Project Z 
Risky 

security 

Risk-free 

security 

Market (000,000) 

(3 mil. shares) 
Probability 

F  
⎪
⎩

⎪
⎨

⎧

350
71
98

 
⎪
⎩

⎪
⎨

⎧

100
71
98

 
⎪
⎩

⎪
⎨

⎧

120
120
120

 
⎪
⎩

⎪
⎨

⎧

300
213
294

 
⎪
⎩

⎪
⎨

⎧

3.0
4.0
3.0

 

Cost/Price  54 54 90 162  

r  (%) 
⎪
⎩

⎪
⎨

⎧

1.548
48.31
48.81

 
⎪
⎩

⎪
⎨

⎧

18.85
48.31
48.81

 
⎪
⎩

⎪
⎨

⎧

3.33
3.33
3.33

 
⎪
⎩

⎪
⎨

⎧

18.85
48.31
48.81

 
⎪
⎩

⎪
⎨

⎧

3.0
4.0
3.0

 

r  (%) 201.48 62.59 33.33 62.59  

F  162.8 87.8 120 263.4  

),cov( mrF  20.44 3.49 0 10.486  

λ  4.52     

),cov( mrFλ  92.39 15.8 0 47.4  

),cov( mrFF λ−  70.41 72 120 216  

eV  52.808 54 90 162  

Equilibrium NPV –1.19 0 0 0  

Disequilibrium NFV –1.59 0 0 0  
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Table 5. Range of applicability of DIP and Proposition 4.1 

 
Security market Type of assets 

Dybvig and Ingersoll’s Proposition Complete Securities (marketed assets) 

Proposition 4.1 Incomplete Projects (nonmarketed assets) 

 

 

 

 

 

 

Table 6. Project Z is traded in the market (first equilibrium) 

 

 
Project is traded  in the 

Market (1 share) 

Risky security 

(3 mil. Shares) 

Risk-free 

security 

 

Market  

(000,000) 

 

Probability 

F  
⎪
⎩

⎪
⎨

⎧

350
71
98

 
⎪
⎩

⎪
⎨

⎧

100
71
98

 
⎪
⎩

⎪
⎨

⎧

120
120
120

 
⎪
⎩

⎪
⎨

⎧

000350.300
000071.213
000098.294

 
⎪
⎩

⎪
⎨

⎧

3.0
4.0
3.0

 

Price  121.57 65.76 90 197.28  

r  (%) 33.91 33.51 33.33 33.51  

NPV 0 0 0 0  
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Table 7. Project Z is traded in the market (second equilibrium) 

 

 
Project is traded  in the 

Market (1 share) 

Risky security  

(3 mil. shares) 

Risk-free 

security 

 

Market  

(000,000) 

 

Probability 

F  
⎪
⎩

⎪
⎨

⎧

350
71
98

 
⎪
⎩

⎪
⎨

⎧

100
71
98

 
⎪
⎩

⎪
⎨

⎧

120
120
120

 
⎪
⎩

⎪
⎨

⎧

000350.300
000071.213
000098.294

 
⎪
⎩

⎪
⎨

⎧

3.0
4.0
3.0

 

Price  76.197 58 90 174  

r  (%) 113.65 51.37 33.33 51.37  

NPV 0 0 0 0  

 


