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Abstract

The demand for an accurate financial risk management involving larger numbers of assets

is strong not only in view of the financial crisis of 2007-2009. In particular dependencies

among assets have not been captured adequately. While standard multivariate copulas have

added some flexibility, this flexibility is insufficient in higher dimensional applications. Vine

copulas can fill this gap by benefiting from the rich class of existing bivariate parametric

copula families. Exploiting this in combination with GARCH models for margins, we develop

a regular vine copula based factor model for asset returns, the Regular Vine Market Sector

model, that is motivated by the classical CAPM and shown to be superior to the CAVA model

proposed by Heinen and Valdesogo (2009). While the model can also be used to separate

the systematic and idiosyncratic risk of specific stocks, we explicitly discuss how vine copula

models can be employed for active and passive portfolio management. In particular, Value-

at-Risk forecasting and asset allocation are treated in detail. All developed models and

methods are used to analyze the Euro Stoxx 50 index, a major market indicator for the

Eurozone. Relevant benchmark models such as the popular DCC model and the common

Student-t copula are taken into account.

1 Introduction

In light of the recent financial crisis of 2007-2009 and increasing volatility at global financial

markets, a diligent risk management is crucially important for any financial institution and also

required by regulators. The Basel II and III rules for banks and Solvency II for the insurance

sector encourage the use of sophisticated internal models. An important issue of such models

is how dependence among different assets is treated. It is a stylized fact that the long time

predominant Gaussian correlations are inappropriate in this matter. Dependencies among asset

returns exhibit features such as tail dependence and asymmetry (see, amongst others, Longin

and Solnik (1995, 2001) and Ang and Bekaert (2002)), for which the classical product-moment

correlation as implied by the normal distribution cannot account. See also Embrechts et al.

(2002) for a comprehensive discussion of the use of linear product-moment correlations in risk

management. Despite this, the dramatic events of 2007-2009 most emphatically stress that the

need for adequate models capturing complex dependence structures of large numbers of assets

and accurately assessing financial risk is stronger than ever.
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It is also well known that asset returns do not follow a Gaussian distribution as already noted

by Mandelbrot (1963). They in particular exhibit fat tails which cannot be captured adequately

using a Gaussian distribution. Since the seminal work of Engle (1982), there however has

been considerable progress in modeling financial time series. In particular, GARCH-models as

introduced by Bollerslev (1986) are widely and successfully used. They allow for time-varying

variances and the use of fat-tailed distributions as observed for financial returns. There also has

been some progress in extending GARCH-models beyond univariate specifications (see Bauwens

et al. (2006) for a survey). Multivariate GARCH-models such as the very popular DCC model

by Sheppard and Engle (2001) and Engle (2002) however use only covariances for dependence

modeling among time series, while maintaining positive definite covariance matrices.

Copulas overcome this problem. According to the famous theorem by Sklar (1959), the

modeling of margins and dependence can be separated by the way of copulas. Hence, the

last years saw a steadily growing literature on copula GARCH-models, where the marginal time

series are modeled with univariate GARCH-models, while copulas are applied for the dependence

structure. A recent survey can be found in Fischer et al. (2009).

Unfortunately, the choice of multivariate copulas is rather limited in contrast to the bivariate

case where a rich variety of different copula types exhibiting flexible and complex dependence

patterns exists. While the infamous Gaussian copula (see Salmon (2009) for a criticism on

its role during the financial crisis) and also the Student-t copula can only capture symmetric

dependencies using correlation matrices, exchangeable Archimedean copulas use only one or two

parameters for the dependency modeling among possibly dozens of variables which clearly is too

restrictive. The so-called pair copula constructions overcome this issue. They were originally

proposed by Joe (1996) and further explored and greatly extended by Bedford and Cooke (2001,

2002) and Kurowicka and Cooke (2006). Regular vines (R-vines) are a convenient graphical

model to classify such pair copula constructions and hierarchical in nature. Each level only

involves the specification of arbitrary bivariate copulas as building blocks and hence allows for

very flexible models exhibiting effectively any possible dependence structure.

The aim of this paper is to present and discuss the use of vine copulas for financial risk

management and thus introduce them to a broader audience. While in finance the use of

copulas is quite common nowadays (see, e.g., Cherubini et al. (2004)), literature on vine copula

modeling so far mainly concentrated on illustrative applications (see Aas et al. (2009), Fischer

et al. (2009), Berg and Aas (2009), Min and Czado (2010) and Czado et al. (2011)). A first

step to compensate this deficiency was taken by Mendes et al. (2010) who employ a D-vine

copula model (a specific sub-class of R-vines) with only four different bivariate copula families

for a six-dimensional data set and discuss its use for portfolio management. Our work goes

well beyond this. Since financial risk management often involves large numbers of assets to be

modeled accurately, we particularly focus on high-dimensional vine copula modeling. Model

selection techniques, which are required to find adequate R-vine structures especially in such

dimensions, are presented. To illustrate our methods we analyze the Euro Stoxx 50 index which

is a major market indicator for the Eurozone.

The analysis of the members of the Euro Stoxx 50 also motivates the consideration of vine

copula based factor models, in particular vine market sector models. Heinen and Valdesogo

(2009) developed an extension of the CAPM which can capture non-linear and non-Gaussian

behavior of the cross-section of asset returns as well as model their dependencies to the market

and the respective sector. Their so-called Canonical Vine Autoregressive (CAVA) model is
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based on two major building blocks: marginal GARCH-models and a canonical vine copula

structure (another sub-class of R-vines). In this paper, we propose the Regular Vine Market

Sector (RVMS) model which uses a flexible general R-vine copula construction without relying

on very strict independence assumptions like the CAVA model. We thoroughly investigate both

models in our application to European stock market returns, establishing the superiority of

the RVMS model over the CAVA model. In contrast to Heinen and Valdesogo (2009), copula

parameters are also fitted using maximum likelihood estimation rather than only sequentially

and hence provide the basis for bootstrapping to obtain confidence intervals. Moreover, although

the factor based RVMS model might suffer from its less flexible structure compared to general R-

vine specifications, we demonstrate in this application that it not only facilitates interpretation

of dependencies but also is a very good model compared to relevant benchmark models. By

grouping assets by sectors, it thus mitigates the curse of dimensionality to some extent.

Our second contribution is a discussion on how vine copula based factor models can be used

to identify the systematic and the idiosyncratic risk inherent in an asset return. It is however

important not to neglect that dependence modeling using copulas goes well beyond summarizing

dependence in one single number. The information contained in a copula is much richer and

crucial to be taken into account when assessing complex financial risk.

Very important from a practitioner’s point of view is our third contribution. We describe

in detail how vine copulas can be used for portfolio management. This includes forecasting

the Value-at-Risk (or any other risk measure) of a portfolio as well as portfolio diversification

calculations and asset allocation. In doing so, we particularly point out why vine copula based

models are a serious alternative to the often used DCC model.

To summarize, this paper introduces R-vines to complex financial applications, in particular

to issues of financial risk management. Building on this work, R-vines can easily serve as a

“construction kit” for even more elaborate models and applications.

The remainder of the paper is structured as follows. The Euro Stoxx 50 data that we analyze

at the end of each of the following sections is described in Section 2. In Section 3 we give a

brief introduction to the theory of copulas and discuss R-vines and their selection. Vine market

sector models are treated in Section 4, where we first review the work by Heinen and Valdesogo

(2009) before our new RVMS model is proposed. The separation of systematic and idiosyncratic

risk is treated subsequently. Finally, portfolio management using vine copulas is described in

Section 5 which is subdivided into the discussion of passive and active management methods.

Section 6 provides conclusions and an outlook to future research.

2 Data

The Euro Stoxx 50 index is a major barometer of financial markets in the Eurozone. It covers

stocks of 50 large Eurozone companies selected based on their market capitalization. According

to Stoxx Ltd, the index serves “as underlying for a wide range of investment products such as

Exchange Traded Funds, Futures and Options, and structured products worldwide”. A detailed

understanding of the dynamics of the Euro Stoxx 50 therefore is an important issue.

This crucially involves an accurate assessment of the dependencies among the index members.

In the present paper we concentrate on 46 of them. For the index composition as of February 8,

2010, these are the stocks from the five largest Eurozone economies, namely Germany, France,

Italy, Spain and the Netherlands. The four disregarded stocks correspond to only 6.7% of the
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Ticker symbols

Indices ^STOXX50E, ^GDAXIP, ^FCHI, FTSEMIB.MI, ^IBEX, ^AEX

Germany ALV.DE, BAS.DE, BAYN.DE, DAI.DE, DB1.DE, DBK.DE, DTE.DE, EOAN.DE,

MUV2.DE, RWE.DE, SAP.DE, SIE.DE

France ACA.PA, AI.PA, ALO.PA, BN.PA, BNP.PA, CA.PA, CS.PA, DG.PA, FP.PA, FTE.PA,

GLE.PA, GSZ.PA, MC.PA, OR.PA, SAN.PA, SGO.PA, SU.PA, UL.PA, VIV.PA

Italy ENEL.MI, ENI.MI, G.MI, ISP.MI, TIT.MI, UCG.MI

Spain BBVA.MC, IBE.MC, REP.MC, SAN.MC, TEF.MC

Netherlands AGN.AS, INGA.AS, PHIA.AS, UNA.AS

Table 1: Ticker symbols of analyzed stocks.

total index weight. All stocks considered in our analyses are shown in Table 1. The table also

shows the respective five national indices which the 46 stocks belong to: the German DAX,

the French CAC 40, the Italian FTSE MIB, the Spanish IBEX 35, and the Dutch AEX. In the

following, these indices as well as the Euro Stoxx 50 will be taken as price indices rather than

performance indices. The quantity of interest in our analyses will be daily log returns.

Recent statistical analyses of the Euro Stoxx 50 can be found, e.g., in Savu and Trede (2010),

Cherubini et al. (2004) and Hlawatsch and Reichling (2010). The first paper analyzes a subset

of twelve stocks using a so-called Hierarchical Archimedean copula, which constitutes a rather

flexible multivariate copula model. Hlawatsch and Reichling (2010) consider a portfolio alloca-

tion problem for 16 major stocks belonging to the Euro Stoxx 50 using skew-t distributions and

a Clayton copula. On the other hand, only Cherubini et al. (2004) analyze all 50 components

of the Euro Stoxx 50 with GARCH(1,1) filters and Student-t error distributions. For the de-

pendence structure they consider multivariate Gaussian and Student-t copulas as well as two

Archimedean copulas.

3 Multivariate copulas

The immense popularity copulas have been enjoying recently is due to the theorem by Sklar

(1959). In the first instance, copulas simply are multivariate distribution functions with uniform

margins. For a random vector X = (X1, ..., Xd) ∼ F with marginal distributions Fi, i = 1, ..., d,

Sklar’s theorem then states that

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)), (3.1)

where C is some appropriate d-dimensional copula. Moreover, if F is absolutely continuous and

F1, ..., Fd are strictly increasing continuous,

f(x1, ..., xd) =

[
d∏

k=1

fk(xk)

]
× c(F1(x1), ..., Fd(xd)),

where small letters denote corresponding density expressions. In other words, copulas conve-

niently allow to separate the modeling of the marginals and the dependency part in terms of

the copula. Comprehensive references on copula theory are the books by Joe (1997) and Nelsen

(2006).

Since copulas are inherently static models, they have to be combined with time series mod-

els for modeling financial returns (see, e.g., Cherubini et al. (2004)). This means that first
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appropriate time series models such as ARMA-GARCH are fitted to each financial return series.

Copula modeling then proceeds with standardized residuals obtained from these models. More

details on this issue will be presented in Section 5.1.

While in two dimensions there is a wide range of flexible copulas available and frequently

used, multivariate copula modeling is more challenging. Standard classes such as elliptical and

Archimedean copulas exhibit severe drawbacks in larger dimensions. In particular, Archimedean

copulas which typically have only one or two parameters impose very strict dependence prop-

erties. Elliptical copulas such as the Gaussian or the Student-t, on the other hand, suffer from

a large number of parameters and symmetry restrictions in the tails. While accounting for tail

dependence, the Student-t copulas however has only one parameter controlling its strength for

all pairs. There has been considerably effort in extending and enriching both classes. One such

approach are the before-mentioned Hierarchical Archimedean copulas, which however suffer from

a somehow restrictive structure and are limited to the Archimedean copula class (see, amongst

others, Savu and Trede (2010)). The class of so-called vine copulas however easily overcomes the

issues of elliptical and Archimedean copulas—as well as other copulas—and at the same time

exploits their virtue in the bivariate case.

3.1 Vine copulas

Vine copulas are another name for so-called pair copula constructions (PCCs) as introduced by

Aas et al. (2009). A PCC can be easily illustrated in three dimensions. Let X = (X1, X2, X3) ∼
F and assume that all necessary densities exist. Then

f(x1, x2, x3) = f1(x1)f(x2|x1)f(x3|x1, x2). (3.2)

Using Sklar’s theorem (3.1) it follows

f(x2|x1) =
f(x1, x2)

f1(x1)
=
c1,2(F1(x1), F2(x2))f1(x1)f2(x2)

f1(x1)
= c1,2(F1(x1), F2(x2))f2(x2), (3.3)

and

f(x3|x1, x2) =
f(x2, x3|x1)
f(x2|x1)

=
c2,3|1(F (x2|x1), F (x3|x1))f(x2|x1)f(x3|x1)

f(x2|x1)
= c2,3|1(F (x2|x1), F (x3|x1))f(x3|x1)
(3.3)
= c2,3|1(F (x2|x1), F (x3|x1))c1,3(F1(x1), F3(x3))f3(x3),

(3.4)

with

F (x|v) =
∂Cxvj |v−j

(F (x|v−j), F (vj |v−j))
∂F (vj |v−j)

, (3.5)

where Cxvj |v−j
is a bivariate copula distribution function and v−j denotes a vector with the j-th

component vj removed.

Combining Equations (3.2)-(3.4) then gives a representation of a three-dimensional joint

density in terms of bivariate copulas C1,2, C1,3 and C2,3|1 only. These can be chosen indepen-

dently of each other so that a wide range of different dependence structures can be modeled

using PCCs which are constructed in essentially the same way in high dimensions.

Vines are a graphical representation to specify such PCCs. They were introduced by Bedford

and Cooke (2001, 2002) and described in more detail in Kurowicka and Cooke (2006) and
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Figure 1: Seven-dimensional R- (left panel) and five-dimensional C-vine trees (right panel) with

edge indices.

Kurowicka and Joe (2011). Statistical inference of regular vines is considered in Dißmann et al.

(2011).

According to Definition 4.4 of Kurowicka and Cooke (2006) a regular vine (R-vine) on d

variables consists first of a sequence of linked trees (connected acyclic graphs) T1, ..., Td−1 with

nodes Ni and edges Ei for i = 1, ..., d− 1, where T1 has nodes N1 = {1, ..., d} and edges E1, and

for i = 2, ..., d− 1 tree Ti has nodes Ni = Ei−1. Moreover, the proximity condition requires that

two edges in tree Ti are joined in tree Ti+1 only if they share a common node in tree Ti.

It is shown in Bedford and Cooke (2001) and Kurowicka and Cooke (2006) that the edges

in an R-vine tree can be uniquely identified by two nodes, the conditioned nodes, and a set of

conditioning nodes, i.e., edges are denoted by e = j(e), k(e)|D(e) where D(e) is the conditioning

set. An example of a seven-dimensional R-vine tree sequence with edge labels is given in the

left panel of Figure 1 (see Dißmann et al. (2011)).

The multivariate copula associated to trees T1, ..., Td−1 is then built up by associating each

edge e = j(e), k(e)|D(e) in Ei with a bivariate copula density cj(e),k(e)|D(e). According to Theo-

rem 4.2 of Kurowicka and Cooke (2006) the R-vine copula density is uniquely determined and

given by

c(F1(x1), ..., Fd(xd)) =

d−1∏
i=1

∏
e∈Ei

cj(e),k(e)|D(e)(F (xj(e)|xD(e)), F (xk(e)|xD(e))),

where xD(e) denotes the subvector of x = (x1, ..., xd) indicated by the indices contained in D(e).

A special case of R-vines which is often considered are canonical vines (C-vines). In par-

ticular, an R-vine is called C-vine if each tree Ti has a unique node with degree d − i, the root

node. A five-dimensional example is shown in the right panel of Figure 1. According to Aas
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et al. (2009) we can write the C-vine copula density as

c(F1(x1), ..., Fd(xd)) =
d−1∏
i=1

d−i∏
j=1

ci,i+j|1,...,i−1(F (xi|x1, ..., xi−1), F (xi+j |x1, ..., xi−1)).

Evidently C-vines are only appropriate when there are pivotal quantities among the random

variables under consideration. Otherwise this convenient tree structure may be too restrictive,

in particular in higher dimensions.

3.2 Model selection

The number of different R-vines is substantial:
(
d
2

)
× (d− 2)!× 2(d−2

2 ) in d dimensions as shown

in Morales-Nápoles et al. (2010). For example, in seven dimensions (see Figure 1) there are

2,580,480 different R-vines, while for d = 23 there are already more R-vines than atoms in the

universe. Also for C-vines there are as many as d!/2 different ones (Aas et al. 2009). We

therefore rely on heuristic methods to select appropriate R- and C-vine trees. Following Aas

et al. (2009), Brechmann et al. (2010) and Dißmann et al. (2011) the idea is to capture the

strongest dependencies in the first trees, since these are typically most important to be modeled

explicitly and accurately.

The setting of the first tree is a graph on d nodes which correspond to the variables and where

all nodes are connected to each other by edges. To each edge a weight is attached according

to an arbitrary pairwise dependence measure δ such as empirical tail dependence or Kendall’s

τ , where the latter will be used in the following due to the fact that it captures the general

dependence among two variables. For R-vine tree selection, we then find a tree on all nodes, a

so-called spanning tree, which maximizes the sum of (absolute) pairwise dependencies. Such a

tree usually is referred to as maximum spanning tree. We hence solve the following optimization

problem

max
∑

edges e={i,j} in
spanning tree

|δij |,

where the absolute values of the pairwise dependencies δij , i 6= j, are used, since it is also

important to model strong negative dependencies as typically indicated by negative values of δ.

Similarly for C-vine tree selection, we choose as root node the node that maximizes the sum of

pairwise dependencies to this node (see Czado et al. (2011)).

Given the selected tree, we then choose pair copulas from a range of ten different families

which are shown in Table 2 with their properties (whether or not they can model positive and

negative dependence, asymmetric dependence and lower and upper tail dependence; see Joe

(1997) and Nelsen (2006)). As selection criterion we use the AIC of Akaike (1973) because it

turned out to perform particularly well in a simulation study (Brechmann 2010, Chapter 10).

Moreover we always perform a bivariate independence test first to obtain parsimonious models.

Parameters for copulas are estimated using bivariate maximum likelihood estimation.

In the next step, we compute transformed observations F (x|v) from the estimated pair

copulas using formula (3.5). These are then used as input parameters for the next trees, which are

obtained similarly by constructing a graph according to the above R-vine construction principles,

in particular the proximity condition, and then finding a maximum dependence tree or the next

root node.
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N t C G F J BB1 BB7 RC RG

positive dep. X X X X X X X X - -

negative dep. X X - - X - - - X X
asymmetric dep. - - X X - X X X X X
lower tail dep. - X X - - - X X - -

upper tail dep. - X - X - X X X - -

Table 2: Bivariate copula families and their properties. Notation of copula families: N =

Gaussian, t = Student-t, C = Clayton, G = Gumbel, F = Frank, J = Joe, BB1 = Clayton-

Gumbel, BB7 = Joe-Clayton, RC = rotated Clayton (90◦), RG = rotated Gumbel (90◦).

The treewise selection and estimation procedure described here gives sequential estimates

of pair copula parameters which are quite quickly obtained and can be used as starting values

for a full maximum likelihood estimation (see Aas et al. (2009) and Hobæk Haff (2010)).

This way of proceeding selects the vine tree structure simultaneously together with pair copula

families and their parameter values. In particular pair copula families are selected individually

and the corresponding parameter estimation only requires bivariate optimization. Usually the

sequential estimation procedure even provides very good estimates and they therefore can be seen

as reasonable approximations to maximum likelihood estimates for the selected tree structure

and selected pair copula families (see Brechmann (2010), Hobæk Haff (2011) and the discussion

below). Especially in higher dimensions, as for example needed when modeling the cross-section

of returns, full maximum likelihood estimation is computationally extremely demanding even if

algorithms are strongly parallelized.

3.3 Application to data

We now investigate the dependence structure of the Euro Stoxx 50 members using R- and C-

vines. For this we consider daily log returns of the indices and stocks described in Section 2

over the 4-year period from May 22, 2006 to April 29, 2010 resulting in 985 observations. In

terms of complexity this means that we are dealing with a 52-dimensional data set (46 stocks,

5 national indices and the Euro Stoxx 50 index). This dimensionality is far beyond vine copula

applications that can be found in the literature so far (see Brechmann et al. (2010) and Dißmann

et al. (2011)). Heinen and Valdesogo (2009) analyze 95 financial returns using C-vines. They

however do not provide maximum likelihood estimates so that it is not clear how reliable their

estimates are.

As noted above, we preliminarily find appropriate models for the univariate time series before

analyzing the dependence of the standardized residuals. The selection process is described in

Appendix A.

We then fit appropriate R- and C-vines as described in Section 3.2. The order of the

first seven C-vine root nodes is as follows: ^STOXX50E, GLE.PA, ^FCHI, ^GDAXIP, ^IBEX,

INGA.AS, FTSEMIB.MI; the Dutch AEX was only identified as the 13th root node. The first

tree of the R-vine is shown in Figure 2.

The order of the C-vine root nodes and the first R-vine tree show that the Dutch AEX

only plays a minor role due to its small size. It is the only national index which is not directly

connected to the Euro Stoxx 50 which constitutes some kind of “root node” of the R-vine.

Further, the Euro Stoxx 50 and the national leading stock indices are identified as main depen-

dency drivers, where the importance of the CAC 40 and the DAX is due to the high number
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Figure 2: First tree of the R-vine.

of French and German stocks represented in the Euro Stoxx 50 (weights of 35.3% and 28.1%,

respectively). The financial companies Société Générale (GLE.PA) and ING Groep (INGA.AS)

also play a central role, which corresponds to the fact that 28.2% of the Euro Stoxx 50 are

composed of financial institutions.

The (sequential) fit of the R- and C-vine models is compared to a multivariate Student-t

copula with one common degrees of freedom parameter. It serves as a benchmark model, since

it is currently the state-of-the-art approach for modeling financial returns (see, e.g., Mashal

and Zeevi (2002) and Breymann et al. (2003)). The parameters of the Student-t copula are

estimated in two steps (Lindskog et al. 2003). First the correlation matrix of the Student-t

copula is determined using the closed form correspondence to bivariate Kendall’s τ ’s and then

the degrees of freedom parameter was found using maximum likelihood estimation. Results

are reported in Table 3 which also gives statistics of Vuong (1989) tests for non-nested model

comparison between the R- and C-vines as well as the Student-t copula. Vuong test statistics are

asymptotically standard normal so that model discrimination can be based on standard normal

quantiles.

While both vine copulas are clearly superior to the Student-t copula, the R-vine is also

superior to the C-vine, especially when taking into account the number of model parameters

which is clearly less for the R-vine with its less restrictive structure.

We also performed joint maximum likelihood estimation of all copula parameters to check

that sequential estimation provides adequate results. The increase in the log likelihood was only

about 0.3% so that we can conclude that it is reasonable to work with sequential estimates here.

To summarize these first results, the C- and especially the R-vine model show a good fit to the

data and provide a directly interpretable dependence structure which corresponds very well to

the economical intuition. In particular, the R-vine identifies the apparent sectorial dependence

present in the data. A more explicit modeling of this sectorial structure is discussed in the
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Copula Log No. of BIC Vuong test w.r.t. R-vine Vuong test w.r.t. Student-t

likelihood param. w/o corr. Schwarz corr. w/o corr. Schwarz corr.

R-vine 30777.84 596 -57447.66 - - -3.80* -24.42*

C-vine 30661.14 685 -56600.83 1.33* 4.81 -3.45* -25.37*

Student-t 30313.23 1327 -51479.92 3.80 24.42 - -

Table 3: Log likelihoods, number of copula model parameters and BICs of the R- and C-vine

as well as Student-t copula fits. Estimates are obtained using sequential estimation. Vuong

test statistics (with and without Schwarz correction for the number of model parameters used)

indicated by asterisks imply that the considered model is indistinguishable from or superior to

the R-vine (columns 5 and 6) or Student-t copula (columns 7 and 8), respectively, at the 5%

level.

following section.

4 Vine market sector models

Motivated by the results of the previous section we develop a new market sector model based on

vines. It is inspired by the famous classical CAPM of Sharpe (1964) and Lintner (1965). The

CAPM essentially assumes that at time t the individual asset returns rt,j , the market return

rt,M and the idiosyncratic error terms εt,j , which are independent of εt−1,j and of εt,k ∀k 6= j,

are jointly normally distributed and follow the linear relationship

rt,j = βjrt,M + εt,j , (4.1)

where βj is usually called the sensitivity of asset j to the market.

The CAPM belongs to a class of more general models, so-called factor models, of which

the CAPM is the simplest with the market being the only factor. The most famous multi-

factor model certainly is the three-factor model of Fama and French (1992). Their model uses

three factors in order to take into account deviations from the CAPM for companies with small

market capitalization (small caps) and with high book-to-market ratio (value stocks). Other

multi-factor models include factors such as industry sectors or currencies (see, e.g., Drummen

and Zimmermann (1992)).

As pointed out in the introduction the restrictive assumptions of the CAPM are inappro-

priate, not to say wrong. Heinen and Valdesogo (2009) addressed these issues and developed a

non-linear and non-Gaussian extension of the CAPM which they called Canonical Vine Autore-

gressive (CAVA) model, where “autoregressive” refers to the fact that the involved copulas are

possibly time-varying.

We first review their model before introducing our new Regular Vine Market Sector model.

4.1 Heinen and Valdesogo’s Canonical Vine Autoregressive model

Heinen and Valdesogo (2009) loosen the normality and linearity assumptions of the CAPM

specified in (4.1) by using a variety of GARCH-models for the marginal time series of financial

returns and by modeling the residual dependence between assets and the market with bivariate

copulas for the standardized residuals. This obviously corresponds to the first tree of a C-vine

with the market as root node. Each asset is further assumed to depend on the market and on
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its sector (e.g., utilities or financial services). To fit this two-factor model to a C-vine structure

with the market and the sectors as root nodes, this model induces independence assumptions:

conditionally on the market, sectorial returns are assumed to be independent and asset returns

independent of sector returns other than their own. The remaining dependence of asset returns

conditioned on the market and on the respective sectors is captured with a multivariate Gaussian

copula which is shown to give a valid copula model by Valdesogo (2009). In the following, we will

refer to this model as Canonical Vine Market Sector (CVMS) model in order to highlight the

underlying model structure. It is illustrated in the following example (see Heinen and Valdesogo

(2009)).

Example 4.1 (CVMS model.). Let rA1 , rA2 , rB1 and rB2 denote the (standardized residuals of)

returns of stocks belonging to sectors A and B, respectively. Further, let rA and rB be those of

the sectors A and B as well as rM of the market. According to the CVMS model, the following

independence assumptions hold:

(i) rA is independent of rB conditioned on rM , and

(ii) rA1 and rA2 are independent of rB conditioned on rM , while rB1 and rB2 are independent of

rA conditioned on rM .

In terms of a C-vine structure we now have the market as the first root node and the sectors as

second and third root nodes, where the order is arbitrary due to the independence assumptions.

Let sector A be the second and B the third root node.

The copula terms of the first C-vine tree T1 with the market as the root node are

c1A,M
(
F (rA1 ), F (rM )

)
, c2A,M

(
F (rA2 ), F (rM )

)
, c1B,M

(
F (rB1 ), F (rM )

)
,

c2B,M
(
F (rB2 ), F (rM )

)
, cA,M (F (rA), F (rM )) , cB,M (F (rB), F (rM )) .

Since A is the second root node, the pair copulas of the second tree T2 are given by

c1A,A|M
(
F (rA1 |rM ), F (rA|rM )

)
, c2A,A|M

(
F (rA2 |rM ), F (rA|rM )

)
,

c1B,A|M
(
F (rB1 |rM ), F (rA|rM )

)︸ ︷︷ ︸
(ii)
= 1

, c2B,A|M
(
F (rB2 |rM ), F (rA|rM )

)︸ ︷︷ ︸
(ii)
= 1

,

according to independence assumption (ii) (the density of the independence copula is of course

1) and cA,B|M (F (rA|rM ), F (rB|rM )) = 1 because of the first independence assumption. Further,

the copulas of the third tree T3 are

c1A,B|M,A

(
F (rA1 |rM , rA), F (rB|rM , rA)

)︸ ︷︷ ︸
(ii)
= 1

, c2A,B|M,A

(
F (rA2 |rM , rA), F (rB|rM , rA)

)︸ ︷︷ ︸
(ii)
= 1

,

as well as

c1B,B|M,A

(
F (rB1 |rM , rA)︸ ︷︷ ︸

(ii)
= F (rB1 |rM )

, F (rB|rM , rA)︸ ︷︷ ︸
(i)
=F (rB |rM )

)
= c1B,B|M

(
F (rB1 |rM ), F (rB|rM )

)
,

and similarly for c2B,B|M,A using both independence assumptions.

Finally, we have a four-dimensional Gaussian copula cρ1A,1B,2A,2B|M,A,B with arguments

F (rAi |rM , rA, rB) = F (rAi |rM , rA) and F (rBi |rM , rA, rB) = F (rBi |rM , rB) for i = 1, 2 due to

independence assumption (ii).
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Figure 3: Left panel: first three trees of the CVMS model in Example 4.1. Right panel: first

and second tree of the RVMS model in Example 4.2.

Then the joint density of the (standardized residuals of) returns rA1 , rA2 , rB1 , rB2 , rA, rB and

rM is given by

f(rA1 , r
A
2 ,r

B
1 , r

B
2 , rA, rB, rM ) = f(rA1 )f(rA2 )f(rB1 )f(rB2 )f(rA)f(rB)f(rM )

× c1A,M
(
F (rA1 ), F (rM )

)
c2A,M

(
F (rA2 ), F (rM )

)
× c1B,M

(
F (rB1 ), F (rM )

)
c2B,M

(
F (rB2 ), F (rM )

)
× cA,M (F (rA), F (rM )) cB,M (F (rB), F (rM ))

× c1A,A|M
(
F (rA1 |rM ), F (rA|rM )

)
c2A,A|M

(
F (rA2 |rM ), F (rA|rM )

)
× c1B,B|M

(
F (rB1 |rM ), F (rB|rM )

)
c2B,B|M

(
F (rB2 |rM ), F (rB|rM )

)
× cρ1A,1B,2A,2B|M,A,B

(
F (rA1 |rM , rA), ..., F (rB2 |rM , rB)

)
.

The first three trees of the C-vine are shown in the left panel of Figure 3. Dotted lines

illustrate the independence assumptions, i.e., independence copulas are chosen for the copulas

corresponding to dotted edges.

4.2 The Regular Vine Market Sector model

The strong assumptions of the CVMS model due to its underlying restrictive C-vine structure

and the more general and very flexible structure of R-vines motivate the construction of an

alternative model for the standardized residuals of appropriately chosen marginal GARCH-

models.
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Clearly, we expect that there are strong relationships between the returns of a stock and the

sector it belongs to. In contrast to the CVMS model, we thus model these dependencies first

as well as the dependencies of the sectors to the market to take into account the joint driver

of dependencies among sectors. If all remaining dependencies are then captured by Gaussian

pair copulas in higher order trees, we speak of the Regular Vine Sector (RVS) model. If however

the dependencies to the market are also modeled conditionally on the respective sectors in the

second R-vine tree before setting all pair copulas of higher order trees to bivariate Gaussian

copulas, we call the model the Regular Vine Market Sector (RVMS) model. As in the CVMS

model, we furthermore assume that sectors are independent conditioned on the market in the

RVMS model. This independence assumption is however only made for convenience to avoid

the selection of a tree structure among indices conditioned on the market. Moreover, note that

the construction of higher order trees is not uniquely determined by the first or second tree in

an RVS or RVMS model, respectively. We solve this problem by simply modeling the strongest

dependencies in each tree as described in Section 3.2 and where ”dependency” usually refers

to Kendall’s τ . Modeling using a multivariate Gaussian copula as in the CVMS model is not

possible here due to the more general underlying R-vine structure (see Brechmann et al. (2010)).

Examples of both models, the one-factor RVS model and the two-factor RVMS model, are given

in the following.

Example 4.2 (RVS and RVMS models.). Similar to Example 4.1 we consider the (standardized

residuals of) returns rA1 , rA2 , rB1 , rB2 , rC1 and rC2 of stocks belonging to sectors A, B and C with

sector returns rA, rB and rC , respectively. Furthermore, rM denotes the market return.

Then the first R-vine tree in the RVS as well as the RVMS model is specified with appropriate

pair copulas as

c1A,A
(
F (rA1 ), F (rA)

)
c2A,A

(
F (rA2 ), F (rA)

)
c1B,B

(
F (rB1 ), F (rB)

)
× c2B,B

(
F (rB2 ), F (rB)

)
c1C,C

(
F (rC1 ), F (rC)

)
c2C,C

(
F (rC2 ), F (rC)

)
× cA,M (F (rA), F (rM )) cB,M (F (rB), F (rM )) cC,M (F (rC), F (rC)) .

In the RVS model, all pair copulas of higher order trees are then set to bivariate Gaussian

copulas. The RVMS model, on the other hand, also models the second R-vine tree under the

assumption that sectors are independent conditionally on the market, i.e.,

cA,B|M (F (rA|rM ), F (rB|rM )) = 1,

and similarly for A and C as well as for B and C (see independence assumption (i) in Example

4.1). Hence, the pair copula terms of the second tree of the RVMS model are

c1A,M |A
(
F (rA1 |rA), F (rM |rA)

)
c2A,M |A

(
F (rA2 |rA), F (rM |rA)

)
× c1B,M |B

(
F (rB1 |rB), F (rM |rB)

)
c2B,M |B

(
F (rB2 |rB), F (rM |rB)

)
× c1C,M |C

(
F (rC1 |rC), F (rM |rC)

)
c2C,M |C

(
F (rC2 |rC), F (rM |rC)

)
.

Without the above independence assumptions, we would have to choose a tree structure for the

sector variables, since the pair copulas cA,B|M , cA,C|M and cB,C|M cannot all be included in an

R-vine at once. Due to the independence assumptions, the model is independent of this choice.

All higher order trees of the RVMS model are then specified with Gaussian pair copulas.

Figure 3 shows the first tree of the RVS and the RVMS models as well as the second tree of

the RVMS model. The dotted lines in the second tree illustrate the independence assumption for

sectors conditionally on the market.
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Before analyzing the Euro Stoxx 50 using vine market sector models, we first discuss the

decomposition into systematic and idiosyncratic risk of asset returns using the RVMS model,

since it is central to any factor model.

4.3 Separation of systematic and idiosyncratic risk

Given the rather simple CAPM equation (4.1) it is straightforward to separate the systematic

market risk and the idiosyncratic risk of the return of an asset j by

σ2j = β2j σ
2
M + σ2ε , (4.2)

where σ2j , σ
2
M and σ2ε denote the variances of the asset return, the market return and the

idiosyncratic error term, respectively.

Such a decomposition is due to the assumptions of linearity and joint normality. For our

non-linear and non-Gaussian RVMS model it is therefore not clear how to obtain a similar result.

We would nevertheless like to present some ideas regarding this issue in order to facilitate the

interpretation of results. First note that we separate marginal and dependency modeling by first

selecting appropriate GARCH-models for the marginal time series. Hence, dependencies are

modeled not directly among returns but among standardized residuals of them. All following

statements are therefore based on the residuals rather than on the original data. Moreover,

variances are not constant when using a GARCH-model but time-dependent. This also prohibits

an expression as in (4.2).

A central—and rather restrictive—assumption of the CAPM is joint normality. In the RVMS

model this is not required. The copulas used here are able to capture more complex dependency

structures than a simple product-moment correlation coefficient as it is the case for Gaussian

random variables. Examples of such structures allow for asymmetric and tail dependent de-

pendencies. Hence the dependence structure of a particular asset j in the RVMS model cannot

simply be summarized in one single number such as the sensitivity βj in the CAPM. A copula

contains much more information and this should not be neglected. In particular, the considera-

tion of joint tail behavior is crucial when dealing with financial returns.

In order to separate market, sectorial and idiosyncratic risk it is however useful to consider

the following: choose a dependence measure such as the product-moment correlation, Kendall’s

association measure τ , Spearman’s rank correlation ρ or Blomqvist’s medial correlation β (see

Nelsen (2006) for more details) and compute it for each pair copula in the RVMS model, which

involves asset j in the conditioned set, i.e., we consider the conditional dependence of asset j to

all other assets and sectors as identified by the R-vine structure. Then one obtains an indication

how strong the (conditional) dependencies to the market M , the respective sector S of asset j

and the other assets and sectors kj1 , ..., kjm are (here m denotes the number of assets and sectors

other than j and S). Let δ be the chosen dependence measure, the fraction

Rj,S(δ) =
|δj,S |

|δj,S |+ |δj,M |S |+ |δj,kj1 |S,M |+ ...+ |δj,kjm |S,M,kj1 ,...,kjm−1
| (4.3)

then gives an indication how strong the sectorial risk is compared to the market and idiosyncratic

risk for asset j. The conditional pairs (j, kj1 |S,M), ..., (j, kjm |S,M, kj1 , ..., kjm−1) are identified

by the used R-vine structure. We take absolute values, since dependence measures can also

take negative values and hence cancel out in the denominator which would be counterintuitive.

14



Similar to (4.3) we can define the market risk conditionally on the sector, i.e., with all dependence

on the sector being removed, as

Rj,M |S(δ) =
|δj,M |S |

|δj,S |+ |δj,M |S |+ |δj,kj1 |S,M |+ ...+ |δj,kjm |S,M,kj1 ,...,kjm−1
|

and the idiosyncratic risk as Rj,ε(δ) = 1 − Rj,S(δ) − Rj,M |S(δ), where Rj,S(δ) + Rj,M |S(δ) is

interpreted as systematic risk. Note that the measures in the denominator could also be weighted

to take into account the conditioning.

Alternatively, the measures δj,S and δj,M |S may of course also be considered separately, then

giving the absolute dependence on the respective sector and on the market conditionally on the

sector. In particular for lower and upper tail dependence coefficients λ` and λu, respectively,

this is is sensible because the joint tail behavior is often rather weak in higher order trees and

then Rj,S(λ`) and Rj,M |S(λ`) (and similar for λu) would have only limited explanatory power.

4.4 Application to data

As indicated by the results in Section 3.3 vine market sector models may be very useful to analyze

the Euro Stoxx 50. Since the independence assumptions of the CVMS model are quite restrictive,

we first carefully investigate these assumptions and assess whether they are appropriate. Further

we compare the fitted vine market sector models to the fitted copula models from Section 3.3

and analyze systematic and idiosyncratic risk of the stocks. When constructing the models, we

will however not consider dynamical pair copula terms in order to limit the model complexity

to a reasonable degree. Time-varying dependency effects for the Regular Vine Market Sector

model defined below are considered in Section 5.1 when we discuss Value-at-Risk forecasting

using rolling window estimates.

4.4.1 Independence assumptions

The CVMS model considered in Section 4.1 crucially relies on independence assumptions to

construct a C-vine structure. Here these assumptions can be explicitly stated as:

(i) the returns of the national indices conditioned on the market return, i.e., on the return of

the Euro Stoxx 50, are independent and

(ii) conditionally on the market return, the individual returns are independent of returns for

national indices other than their own, e.g., returns of German stocks are independent of

the French CAC 40 conditioned on the Euro Stoxx 50.

The first independence assumption also applies to the RVMS model, while the second is not

needed there. This however is the crucial difference between both models as shown in the

following.

While the first root node of the CVMS model clearly is ^STOXX50E, the order of root

nodes 2 to 6 is arbitrary (see Example 4.1). We choose the order according to the number

of stocks under consideration (see Table 1), i.e., we choose ^FCHI as second, ^GDAXIP as

third, FTSEMIB.MI as fourth, ^IBEX as fifth and finally ^AEX as sixth root node. This also

corresponds to the order selected for the C-vine fit in Section 3.3.

Independence assumption (ii) (for the stocks) is investigated in the columns of Table 4

which displays the percentage of rejections of the independence hypothesis using the bivariate

15



^FCHI ^GDAXIP FTSEMIB.MI ^IBEX ^AEX

French - 42% 47% 32% 58%

German 33% - 42% 33% 33%

Italian 83% 50% - 33% 33%

Spanish 80% 100% 60% - 60%

Dutch 50% 25% 50% 50% -

total 56% 50% 47% 34% 48%

Table 4: Percentages of rejection of the independence hypothesis for stocks from each country

versus indices of countries other than their own conditioned on ˆSTOXX50E.

^FCHI ^GDAXIP FTSEMIB.MI ^IBEX

^GDAXIP 0.26*

FTSEMIB.MI 0.91* 0.00

^IBEX 0.00 0.00 0.32*

^AEX 0.00 0.86* 0.05* 0.00

Table 5: p-values of bivariate independence tests for national stock indices conditioned on

ˆSTOXX50E. p-values indicated by ”*” imply that the independence hypothesis cannot be

rejected at the 5% level in accordance with the assumptions of the CVMS and RVMS models.

independence test based on Kendall’s τ (see, e.g., Genest and Favre (2007)) for variable pairs

involving the respective national index, e.g., the null hypothesis of independence of a specific

German stock and ˆFCHI conditioned on ^STOXX50E is rejected for 33% of the German stocks,

where the CVMS model assumes 0%). p-values of independence tests between the national

indices in order to check the first independence assumption are shown in Table 5.

Evidently, independence assumptions (i) and (ii) do not hold in general. In particular,

conditionally on the market, i.e., the Euro Stoxx 50, there is significant dependence of Italian

and Spanish stocks on the French CAC 40 as well as dependence of all Spanish stocks on the

German DAX, which contradicts independence assumption (ii). In total, the assumption is

wrong for about 50% of all variable pairs under consideration. Moreover, the null hypothesis of

independence is pairwisely rejected for the Spanish IBEX 35, the Dutch AEX and the CAC 40

as well as for the Italian FTSE MIB and the IBEX 35 with respect to the DAX in contradiction

to independence assumption (i).

While the assumptions of the CVMS model are clearly incorrect here, the assumption of the

RVMS model that sectors are pairwisely independent is not true here either (the hypothesis is

rejected for 50% of the pairs). However, in contrast to the CVMS model, we can circumvent

the problem, since not all bivariate copulas for two sectors conditioned on the market can be

included in the model so that it remains a valid R-vine (tree structure!). If we choose the

pairs ^AEX–^GDAXIP, ^GDAXIP–^FCHI, ^FCHI–FTSEMIB.MI and FTSEMIB.MI–^IBEX,

we obtain a valid density and the independence assumption is satisfied.

4.4.2 Model comparisons

We now compare the CVMS model as well as the RVMS and the RVS models to the R- and

C-vine models fitted in Section 3.3. For comparison to the first R-vine tree shown in Figure 2,

the first tree of the RVMS and RVS models is shown in Figure 4.
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SAP.DE

Figure 4: First tree of the RVMS and RVS models.

As indicated by the problematic independence assumptions, there are important dependen-

cies which are neglected in the first trees of the CVMS model. It then aims at capturing all

remaining dependencies with a multivariate Gaussian copula. This however means that the

transformed variables (3.5) obtained from the pair copulas of tree T6 are jointly normal which

is a rather strict assumption given that the data might exhibit, e.g., asymmetric dependence or

strong joint tail behavior. Hence, we used the copula goodness-of-fit test based on Rosenblatt’s

transformation (Breymann et al. 2003) to investigate the hypothesis of joint normality, since

this test performs particularly well especially against heavy tailed alternatives as they often

occur in financial applications (Berg 2009) and since it is computationally less demanding than

alternative multivariate tests. Here, the test clearly rejected the null hypothesis of normality

with an approximate p-value of 0.00, i.e., a multivariate Gaussian copula is not appropriate

which again contradicts the assumptions of the CVMS model.

The use of Gaussian pair copulas in higher order trees of the RVMS and the RVS models

cannot be validated that easily. We can however employ the heuristic procedure developed by

Brechmann et al. (2010) to investigate an appropriate vine tree after which remaining pair-

copulas can be set to Gaussian. Using its parsimonious version based on the Vuong test with

Schwarz correction confirms the assumption of the RVMS model, while Gaussian copulas already

after the first tree as in the RVS model seem inappropriate.

Table 6 compares the vine market sector models to the R- and C-vine as well as the Student-t

copula fitted in Section 3.3. As before log likelihoods obtained by sequential estimation, BICs

and Vuong tests with respect to the R-vine and the Student-t copulas are shown. For reasons of

comparison, we also consider an alternative specification of the CVMS model: instead of using

a multivariate Gaussian copula for the CVMS model, we fit all remaining C-vine trees with

Gaussian pair copulas as in the RVMS models which allows for bivariate independence tests for

the pairs of transformed variables (3.5) in each tree. The resulting model is denoted as CVMS-P
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Copula Log No. of BIC Vuong test w.r.t. R-vine Vuong test w.r.t. Student-t

likelihood param. w/o corr. Schwarz corr. w/o corr. Schwarz corr.

R-vine 30777.84 596 -57447.66 - - -3.80* -24.42*

C-vine 30661.14 685 -56600.83 1.33* 4.81 -3.45* -25.37*

Studen-t 30313.23 1327 -51479.92 3.80 24.42 - -

CVMS 30309.46 1212 -52265.05 4.75 26.27 0.04* -4.06*

CVMS-P 29861.63 495 -56311.40 8.93 5.54 4.23 -22.65*

RVS 29964.20 506 -56440.71 7.50 4.64 3.26 -23.16*

RVMS 30126.28 535 -56564.99 6.52 4.41 1.85* -25.21*

Table 6: Log likelihoods, number of copula model parameters and BICs of the R- and C-vine, the

Student-t copula and the vine market sector model fits. Estimates are obtained using sequential

estimation. Vuong test statistics (with and without Schwarz correction for the number of model

parameters used) indicated by asterisks imply that the considered model is indistinguishable from

or superior to the R-vine (columns 5 and 6) or Studen-t copula (columns 7 and 8), respectively,

at the 5% level.

to indicate the pairwise modeling.

In contrast to Heinen and Valdesogo (2009), we also computed the maximum likelihood

copula parameter estimates of our new vine market sector model, the RVMS model. As before

for the general R-vine, the increase in the log likelihood compared to sequential estimation is

very small (about 0.1%), so that BIC values and Vuong test results barely change and confirm

the corresponding results obtained from the sequential estimation procedure. Moreover, the full

maximum likelihood estimates provide the basis for bootstrapping to obtain confidence intervals.

To summarize, the CVMS model of Heinen and Valdesogo (2009) is inappropriate to explain

the dependence of the Euro Stoxx 50. It requires a lot of parameters, since a 46-dimensional

correlation matrix has to be fitted for the remaining dependency after the sixth C-vine tree—

which is hardly feasible if maximum likelihood estimation is desired instead of the inversion

of Kendall’s τ . The over-specification leads to a high log likelihood, but taking into account

the number of model parameters, the model fit is clearly inferior to the competitive models.

Moreover, the model assumptions of the CVMS model were shown to be not satisfied. Although

the CVMS-P improves in some regard, in particular in terms of parsimonity, R-vine based models

are still superior. Again taking into account the number of model parameters, the current state-

of-the-art dependence model, the Student-t copula, is however the worst model and can be

regarded as inferior to all vine copula models.

4.4.3 Systematic and idiosyncratic risk

The RVMS model can be used to separate systematic and idiosyncratic risk of stocks as discussed

in Section 4.3. We therefore computed the sectorial risk Rj,S , i.e., the risk captured by the

national index, and conditionally on the respective sector the market risk Rj,M |S for each stock

j. As dependence measure we use Kendall’s τ and product-moment correlations which we

obtained from an RVMS model with only Gaussian pair copula. The results for the stocks from

each country are shown in Figure 5.

Apparently sectorial risk is quite variable across different stocks. It can however be stated

that the mean sectorial risk among German stocks is higher than that of the other four countries
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Figure 5: Sectorial and market risk of the stocks from each country in the Euro Stoxx 50 data

according to the general RVMS model (Rj,s(τ), Rj,M |S(τ)) and an RVMS model with only

Gaussian copulas (Rj,s(ρ), Rj,M |S(ρ)). Horizontal lines indicate the mean sectorial risk Rj,s(τ).

which is approximately similar, that is the German stock market is evidently more strongly self-

contained. Conditionally on the respective sectors, the market risk is very small for all stocks.

When we fitted copulas, we always investigated if variables were independent and hence the

market risk is even zero for some stocks, where the test detected independence between a stock

and the Euro Stoxx 50. The rather high idionsyncratic risk of most stocks can be explained

by major dependencies on other stocks as identified, e.g., in the first R-vine tree shown in

Figure 2. Moreover, these results correspond to the analysis of Drummen and Zimmermann

(1992) who, using a multi-factor model, find that the country effect is much stronger than that

of the European market—which also confirms the assumed structure of the RVMS model—,

while the proportion of idiosyncratic risk is about 50% even when more factors are used than

in our model. Finally, Rj,S(δ) and Rj,M |S(δ) appear to be rather robust measures in terms of

the chosen dependence measure δ, since the results using Kendall’s τ and the product-moment

correlation are very similar.

Furthermore, we also used the RVMS model to obtain lower and upper tail dependence

coefficients with respect to the sector λ`j,S and λuj,S and to the market λ`j,M |S and λuj,M |S for each

stock j in order to assess the strength of the joint tail behavior. Note that λ`j,kjr |S,M,kj1 ,...,kjr−1

and λuj,kjr |S,M,kj1 ,...,kjr−1
from Equation (4.3) are often zero and hence the corresponding risk

measures Rj,S and Rj,M |S have only limited information value and are not considered here.
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Figure 6: Sectorial and market tail dependence coefficients of the stocks from each country in

the Euro Stoxx 50 data according to the RVMS model.

Figure 6 shows the tail dependence coefficients for the stocks from each country. Lines indi-

cating the lower tail dependence are mostly not distinguishable from the lines indicating upper

tail dependence, since most dependence is symmetric. Only Repsol YPF (REP.MC) exhibits

asymmetric sectorial tail dependence indicating an increased risk if the Spanish stock market

is going down. Deutsche Telekom (DTE.DE), on the other hand, is the only company with

no sectorial tail dependence but instead an increased and asymmetric market tail dependence,

which in general is very low if present at all. Overall, the tail dependence patterns are rather

heterogeneous.

5 Portfolio management

So far all analyses have been static and mainly serve the purpose of better understanding the

dependence structure of a data set. Now we describe how the vine copula methodology can be

used for portfolio management.

5.1 Passive portfolio management

We begin with passive portfolio management. The aim is to forecast the Value-at-Risk (VaR) of

a given portfolio of assets 1, ...,M on a daily basis. To start with, we select a moving window size

T (e.g., three years), a sample size N (e.g., 100,000) and portfolio weights ωj , j = 1, ...,M with
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∑M
j=1 ωj = 1 (the long-only constraint ωj ≥ 0 is not required here). Using a copula dependence

model with ARMA-GARCH-margins we then proceed as follows to forecast the one day ahead

Value-at-Risk.

(i) We specify ARMA(p,q)-GARCH(r,s)-models with appropriate error distribution for the

marginal time series, i.e., for j = 1, ...,M and t = 1, ..., T we estimate the parameters of

the following model:

rt,j = µj +

p∑
k=1

φk,jrt−k,j + εt,j +

q∑
k=1

θk,jεt−k,j , σ2t,j = ωj +
r∑

k=1

αk,jε
2
t−k,j +

s∑
k=1

βk,jσ
2
t−k,j ,

where εt,j = σt,jZt,j and (Zt,j) follows the white noise error distribution Fj . Standardized

residuals are given by

ẑt,j =
1

σ̂t,j

(
rt,j − µ̂j −

p∑
k=1

φ̂k,jrt−k,j −
q∑

k=1

θ̂k,j σ̂t−k,j ẑt−k,j

)
.

(ii) We use the estimates to compute the ex-ante GARCH variance forecast for j = 1, ...,M ,

σ̂2T+1,j = ω̂j +
r∑

k=1

α̂k,j σ̂
2
T+1−k,j ẑ

2
T+1−k,j +

s∑
k=1

β̂k,j σ̂
2
T+1−k,j . (5.1)

(iii) Using the estimated error distribution functions F̂j we fit a copula model to the standard-

ized residuals.

(iv) For each n = 1, ..., N :

(a) Using the estimated copula parameters and the inverse error distribution functions,

we simulate a sample of standardized residuals (ẑT+1,1, ..., ẑT+1,M )′.

(b) The samples, the estimated ARMA parameters and the ex-ante GARCH variance

forecasts (5.1) are used to compute the ex-ante return forecast for j = 1, ...,M ,

r̂T+1,j = µ̂j +

p∑
k=1

φ̂k,jrT+1−k,j + σ̂T+1,j ẑT+1,j +

r∑
k=1

θ̂k,j σ̂T+1−k,j ẑT+1−k,j .

(c) The portfolio return forecast is then given by r̂T+1,P =
∑M

j=1 ωj r̂T+1,j .

(v) Finally, we compute the (1 − α)-VaRs, VaR1−α
T+1, of the portfolio return by taking the

α-quantiles of the portfolio return forecasts.

This procedure can easily be repeated daily, where we recommend to use sequential estimates

for vine copula models, since they are quickly obtained and can be seen as reliable approximations

to joint maximum likelihood estimates as discussed earlier. In step (v) any other risk measure

such as the expected shortfall could of course easily be used.

Evidently, one could also directly fit a time series model to the portfolio return series (rt,P =∑M
j=1 ωjrt,j) and forecast based on it. The virtue of our approach however is that it allows to

compute the VaR of any possible portfolio involving the assets 1, ...,M based on the samples

obtained in step (iv)(b). In other words, we can compute the VaR for any set of weights
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ωj , j = 1, ...,M with
∑M

j=1 ωj = 1. This will prove useful for active portfolio management as

discussed in Section 5.2. Moreover, the approach allows to explicitly determine the diversification

benefit of computing the portfolio VaR rather than summing up the individual VaRs of each

return series. We define the diversification benefit DBt at time t and level 1− α as

DB1−α
t := 1−

VaR1−α
t (

∑M
j=1 ωjrt,j)∑M

j=1 ωjVaR1−α
t (rt,j)

, (5.2)

which quantifies the percentage increase in wealth the investor occurs, since he has to set aside

less risk capital.

In terms of statistical modeling VaR forecasting serves an additional purpose. By predicting

the VaR for historical data (testing data set) we can assess the prediction accuracy of our models.

For this we consider the hit sequence of ex-post exceedances (Christoffersen 1998)

It =

{
1, if rt,P < VaR1−α

t

0, else
, (5.3)

where rt,P denotes the ex-post observed portfolio return at time t. This sequence should exhibit

two properties if the forecasts are accurate. First, the exceedances should occur independently,

i.e., not in clusters, and second, the proportion of exceedances should approximately equal the

VaR confidence level α (unconditional coverage). The term “conditional coverage” encompasses

both properties.

In the literature, a wide range of tests for these two properties has been proposed in recent

years (see, e.g., Campbell (2007) for a review). Since each test exhibits certain advantages and

disadvantages and there are no general guidelines of which test to use, we recommend applying

a battery of such tests to ensure that results are not biased in one or the other direction. For

example, the following tests may be considered.

• The proportion of failures (POF) test of unconditional coverage by Kupiec (1995).

• The Markov test of independence by Christoffersen (1998).

• The joint test of conditional coverage by Christoffersen (1998) which combines the first

two tests.

• The duration-based mixed Kupiec test of conditional coverage by Haas (2001), where

durations are the time between two exceedances Iti and Iti+1 .

• The duration-based Weibull test of independence by Christoffersen and Pelletier (2004).

• The duration-based GMM test of conditional coverage by Candelon et al. (2011) with

orders 2 and 5.

5.2 Active portfolio management

Vine copulas are however useful not only for passive but also for active portfolio management.

In particular, we discuss how vine copula models can be used for conditional asset allocation.

Classically, asset allocation follows the mean-variance approach by Markowitz (1952). As in

Section 5.1 we consider M assets. The aim of conditional asset allocation is to find the optimal
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portfolio allocation for the next day, i.e., the optimal weight ωj of each asset j ∈ {1, ...,M}. In

the mean-variance methodology an optimal portfolio means a portfolio with minimum variance

for a given return r0. Let rT+1,j denote tomorrow’s return of asset j = 1, ...,M and similarly

ΣT+1 the covariance matrix of tomorrow’s returns. Then the optimal portfolio weights are the

solution of the following quadratic optimization problem:

minω′ΣT+1ω s.t. rT+1,P = ω′rT+1 = r0,
M∑
j=1

ωj = 1, (5.4)

where ω = (ω1, ..., ωM )′ and rT+1 = (rT+1,1, ..., rT+1,M )′. The collection of portfolios with

different given returns r0 is called efficient frontier. If no short-selling is allowed, we can add the

long-only constraint ωj ≥ 0, j = 1, ...,M . Further, we talk about the minimum-risk portfolio, if

the constraint ω′rT+1 = r0 is dropped.

Obviously, return and variance of the next day are not known. Here, the vine copula models

come into play: By following the approach presented in Section 5.1, we obtain N predicted

returns for the next day (in step (iv)(b)). Based on these forecasts we can easily compute the

empirical means r̂T+1 and covariance matrix Σ̂T+1 and plug them into (5.4) to obtain optimal

portfolio weights.

Since only the first two moments are taken into account, this approach however looses a lot

of information about the dependence structure, especially about the tails, as modeled by the

vine copula. Alternative approaches such as mean-VaR portfolio selection,

min VaR1−α
t (ω′rT+1) s.t. ω′rT+1 = r0,

M∑
j=1

ωj = 1,

therefore may be more appropriate and can easily be carried out using the vine copula method-

ology which provides N predicted returns for each assets so that quantities such as the VaR are

straightforward to obtain. In the end, the choice of risk measure yet depends on the investor.

5.3 Application to data

We use the above procedure to forecast the VaR of the portfolio of the 46 Euro Stoxx 50 stocks in

our data set with weights according to the index composition as of February 8, 2010. For market

risk as we consider it here one typically uses a testing period of 250 days which is approximately

one year of trading. Thus we use a moving window of 900 observations, corresponding to

approximately 3.5 years of daily observations, and a forecasting period from December 30, 2009

to December 20, 2010 with 250 daily observations. For this period we then forecast the one

day ahead VaR for the RVMS model and the general R-vine model, which, as described above,

are re-estimated daily. As benchmark models we use Gaussian and Student-t copulas as well as

the DCC model by Sheppard and Engle (2001) and Engle (2002) with Gaussian and Student-t

innovations. In particular, the DCC model is very popular and therefore constitutes the most

relevant benchmark for the vine copula models. For computational reasons, we however only

use a diagonal DCC. Moreover, for reasons of comparisons we perform the exercise using a

multivariate independence copula.

We preliminarily decide to fit ARMA(1,1)-GARCH(1,1)-models with Student-t error distri-

bution to all marginal time series in contrast to the more detailed analysis before (see Appendix

A). This is done in order to limit the complexity of the approach and this is also approximately
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Figure 7: Log return time series of the Euro Stoxx 50 porfolio return with 90%/95%/99%-VaR

forecasts of the RVMS model, the Student-t copula, the DCC model with Gaussian innova-

tions and the independence copula. VaR exceedances (5.3) are marked by squares, circles and

triangles, respectively.

accurate according to Table 8. Moreover, we again use sequential estimation because of the

high computational effort of fitting 250 R-vine models for the full general model and the RVMS

model each.

The return time series and the VaR forecasts of some of the models under consideration are

displayed in Figure 7 (sample size is N = 100, 000). For a testing period of 250 observations and

confidence levels of 10%/5%/1% we expect 25, 12.5 and 2.5 exceedances, respectively. Appar-

ently VaR forecasts of the independence copula model are completely inaccurate. We however

would like to evaluate them using the above tests in order to compare them directly to the

forecasting accuracy of the general R-vine, the RVMS model, the Gaussian and the Student-t

copula as well as the DCC models. For our testing period the R-vine and the RVMS model as

well as the Gaussian and the Student-t copulas produced the same hit sequences and hence are

considered together.

Numbers of exceedances and p-values of the above tests are shown in Table 7. Beginning with

the general R-vine and the RVMS model, it is evident from the tests that the VaR forecasts at

all three levels are sufficiently accurate, since the null hypotheses of independence, unconditional

and conditional coverage cannot be rejected according to all tests. In particular, exceedances

are clearly independent, while there is a (non-significant) lack of coverage, since the numbers of

exceedances are slightly increased compared to the expected ones. The same results hold for the

Gaussian and Student-t copulas which we expected given the high number of model parameters.
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Tests of independence, unconditional and conditional coverage

Model Level No. of POF Markov Joint Mixed Weibull GMM GMM

exceed. (uncond.) (indep.) Christoff. Kupiec (indep.) (order 2) (order 5)

R-vine/ 90% 30 0.305 0.820 0.576 0.107 0.790 0.245 0.460

RVMS 95% 16 0.329 0.976 0.621 0.148 0.656 0.350 0.379

99% 4 0.380 0.718 0.638 0.216 0.988 0.398 0.847

Gauss/ 90% 29 0.410 0.708 0.663 0.129 0.762 0.357 0.629

t 95% 16 0.329 0.976 0.621 0.148 0.661 0.350 0.379

99% 4 0.380 0.718 0.638 0.216 0.988 0.398 0.847

DCC 90% 24 0.832 0.816 0.952 0.458 0.572 0.976 0.988

(Gauss) 95% 13 0.885 0.231 0.483 0.565 0.548 0.909 0.931

99% 5 0.162 0.651 0.339 0.144 0.899 0.210 0.572

DCC 90% 20 0.276 0.743 0.524 0.217 0.669 0.663 0.628

(t, df=7) 95% 11 0.657 0.313 0.545 0.499 0.635 0.939 0.743

99% 0 - - - - - - -

DCC 90% 17 0.075 0.870 0.202 0.062 0.848 0.000 0.000

(t, df=4) 95% 7 0.083 0.525 0.181 0.143 0.665 0.075 0.196

99% 0 - - - - - - -

indep. 90% 92 0.000 0.414 0.000 0.000 0.050 0.000 0.000

95% 79 0.000 0.085 0.000 0.000 0.021 0.000 0.000

99% 61 0.000 0.019 0.000 0.000 0.661 0.000 0.000

Table 7: p-values of the VaR backtests described in Section 5.1.

Further, the DCC model with Gaussian innovations also shows good results in terms of the

backtests and none of the hypotheses can be rejected. However, using Student-t innovations in

the DCC model leads to too cautious forecasts and therefore to a too high risk capital. Finally,

use of the independence copula to forecast VaR numbers fails completely. As already noted

above, the numbers of exceedances are much too large and the hypotheses of (un)conditional

coverage are strongly rejected. The hypotheses of independence are partly not rejected, but this

has only limited informative value, in particular when taking the conditional coverage tests into

account.

So, why using a vine copula based model for this purpose if the common DCC with Gaussian

innovations also accurately forecasts the VaR? The answer is a reduction in risk capital. When

we compare VaR forecasts of the DCC model and the vine copula based models, it turns out

that those of the copula models are generally lower at the 90% and 95% levels (by 11% and

6%, respectively), which are forecasted most accurately due to their smaller quantile levels. At

the 99% level there is a slight increase in the VaR. This is due to the fact that the Gaussian

innovations ignore heavy tail events. When using the DCC with Student-t innovations the VaRs

obtained from the R-vine and the RVMS model are always much lower. This means that the

use of a vine copula based model can reduce the required risk capital while providing the same

level of (un)certainty regarding VaR exceedances.

We also have a look at the diversification benefit (5.2). For all models under consideration

the diversification benefit is almost constant over time (time series plots are not shown here).

On average, it varies between 21% and 26% dependending on the model and on the VaR level.

To illustrate asset allocation using vine copula models, we used the RVMS model to com-

pute minimum-risk portfolios with long-only constraint based on the 100,000 samples for each

return time series, so that estimates can be regarded as quite accurate. For stocks with average

weight larger than 5%, smoothed weights over time are shown in Figure 8. Not surprisingly the
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Figure 8: Smoothed weights of minimum-risk portfolios using the mean-variance approach. Only

stocks with average weight larger than 5% are shown.

minimum-risk portfolio is constituted to a large part of stocks which are robust to high volatil-

ity in the market such as Munich Re (MUV2.DE, reinsurance), Unilever (UNA.AS, consumer

products) or Enel (ENEL.MI, utilities).

Furthermore we also computed the mean-variance efficient frontier for each time point. Fig-

ure 9 shows it for the 50th, 100th, 150th, 200th and 250th time point in the forecasting period.

Evidently its shape varies substantially based on the market conditions which are also reflected

in the minimum-risk portfolio weights shown above. Figure 9 also shows minimum-risk mean-

VaR portfolios which are clearly different from the minimum-risk mean-variance portfolios and

hence illustrate the influence of another risk measure than the variance.

In conclusion, we can state that vine copula based models are very useful for portfolio man-

agement. Both vine copula based models considered here produce sufficiently accurate VaR

forecasts and are clearly superior to an independence copula. With respect to the Gaussian and

Student-t copula benchmarks, no significant difference could be determined. Similarly for the

DCC model with Gaussian innovations, while Student-t innovations are not appropriate here.

A possible decrease in required risk capital when using a vine copula based model rather than

a DCC model shows the usefulness of the proposed methodology. Also note the RVMS model

performs just as well as the general R-vine model, but at the same time forecasts are computed

approximately 40% faster, i.e., the RVMS model is evidently more efficient computationally

due to its more specific structure. In terms of active portfolio management, this can easily be

exploited for asset allocation and extensions beyond the mean-variance approach are straight-

forward, since large samples of each asset are given and thus arbitrary risk measures can be

estimated.

6 Summary and conclusion

The aim of this paper was to present the use and usefulness of vine copulas in financial risk

management. We developed a flexible R-vine based factor model for stock market dependencies,

the RVMS model, and discussed passive and active portfolio management using vine copula

models. The developed methodology was used to analyze the dependency structure among

important European stocks as represented in the Euro Stoxx 50 index. In these analyses our

models were critically compared to relevant benchmark models such as the DCC model and the
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Figure 9: Conditional mean-variance efficient frontiers at 2010-03-11, 2010-05-24, 2010-08-02,

2010-10-11 and 2010-12-20 (from top left to bottom right). The respective minimum-risk portfo-

lios are marked with a solid point, minimum-risk portfolios with respect to the VaR with a solid

square. The x-axis shows the predicted standard deviation, the y-axis the predicted return.

state-of-the-art dependency model, the Student-t copula. It turned out that vine copula models,

and in particular the RVMS model, provide good fits of the data and accurately and efficiently

forecast the Value-at-Risk.

In future, the RVMS model has to be investigated more closely in various applications. In

particular, when asymmetric dependencies are present, we expect the RVMS model to be clearly

superior to models which can only capture symmetric dependence such as the Student-t copula.

Extensions to more factors or completely different factor structures are also to be investigated.

The dependence structure of sectors in the RVMS model might, e.g., be decomposed into sub-

sectors. As an example one might think of a decomposition of the MSCI World into continental

indices which again can be decomposed into national indices. Vine based factor models in the

light of the studies by Fama and French (1992) and Drummen and Zimmermann (1992) are

interesting extensions, too.

Another important direction of future research is the consideration of dynamic copula pa-

rameter structures for the RVMS model. Research in this direction is still at a rather early stage

(see Ausin and Lopes (2010), Manner and Reznikova (2010) and Almeida and Czado (2011)).

While the present work constitutes one of the first applications of vines in dimensions 50 or

higher (and, to the best of our knowledge, is the first to perform joint maximum likelihood

estimation in such dimensions), dynamic (vine) copula models in such dimensions are not yet

feasible.

Finally a note on the number of parameters: At first glance the vine copula models may

appear grossly overspecified. While Tables 3 and 6 only show the number of copula model
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parameters, the complete model also includes the parameters for the marginal ARMA-GARCH-

models. If ARMA(1,1)-GARCH(1,1)-models with mean and Student-t error distribution are

chosen, this means an additional 52 × 7 = 364 parameters in our 52-dimensional application.

Even if the vine copulas have clearly less parameters than the often used Gaussian and Student-

t copulas with full correlation matrix, this still amounts to more than 800 parameters. A

diagonal DCC model, on the other hand, has clearly less parameters. When combining it with

ARMA(1,1)-models with mean (52 × 3 = 156), one ends up with only 156 + 3 × 52 + 2 = 314

parameters. Things however look different, when a non-diagonal DCC model is used, which

may be necessary in certain application. Then the model has the immense number of 156 +

52 + 2× 522 + 2 = 5618 parameters! Under this impression the number of parameters of a vine

copula model appears much less awkward and still is very well manageable using the techniques

discussed in this paper.
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A Marginal models of Euro Stoxx 50 data

As discussed in Section 3, marginal time series models for the Euro Stoxx 50 data have to be

found in the first step of our two step estimation approach. Here, time series models are selected

according to a stepwise procedure:

(i) We fit ARMA(1,1)-GARCH(1,1)-, AR(1)-GARCH(1,1)-, MA(1)-GARCH(1,1)- and GARCH(1,1)-

models to the univariate time series. As error distribution we use a Student-t distribution

to account for heavy tails, while a skewed Student-t error distribution was not neeeded,

since no significant skewness was found in the data. For all four time series models we

then perform Kolmogorov-Smirnov goodness-of-fit tests for the standardized residuals and

choose the model with the highest p-value if this value is at least larger than 5%.

(ii) If the degrees of freedom of the Student-t error distribution are larger than ten, we choose

a standard normal distribution instead (if the p-value of the corresponding Kolmogorov-

Smirnov test is larger than 5%).

(iii) Since the Kolmogorov-Smirnov test sometimes lacks power, we also perform Ljung-Box

tests with lag 30 for all residuals. If a p-value is smaller than 5%, we stepwisely increase

the corresponding ARMA(p,q) terms, so that the model remains rather parsimonious, until

both the Ljung-Box test and the respective Kolmogorov-Smirnov test for the residuals have

p-values larger than 5%.

The resulting marginal time series models are shown in Table 8.
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model µ̂ φ̂1 θ̂1 ω̂ α̂1 β̂1 ν̂ KS LB

^STOXX50E GARCH(1,1) 0.001 - - 0.000 0.104 0.891 8.586 0.317 0.615

^GDAXIP GARCH(1,1) 0.000 - - 0.000 0.087 0.906 8.665 0.103 0.589

^AEX GARCH(1,1) 0.001 - - 0.000 0.115 0.880 -a 0.142 0.399

^FCHI GARCH(1,1) 0.001 - - 0.000 0.096 0.897 9.489 0.409 0.400

FTSEMIB.MI GARCH(1,1) 0.000 - - 0.000 0.104 0.897 9.426 0.206 0.376

^IBEX GARCH(1,1) 0.000 - - 0.000 0.105 0.890 7.212 0.393 0.503

ACA.PA GARCH(1,1) -0.000 - - 0.000 0.085 0.915 6.611 0.921 0.749

AGN.AS GARCH(1,1) 0.000 - - 0.000 0.129 0.875 7.401 0.662 0.180

AI.PA MA(1)-GARCH(1,1) 0.001 - -0.114 0.000 0.094 0.873 5.932 0.923 0.060

ALO.PA AR(1)-GARCH(1,1) 0.001 -0.065 - 0.000 0.058 0.935 6.732 0.810 0.602

ALV.DE ARMA(5,0)-GARCH(1,1)b 0.001 0.012 - 0.000 0.092 0.903 6.538 0.240 0.078

BAS.DE ARMA(1,1)-GARCH(1,1) 0.002 -0.684 0.668 0.000 0.097 0.900 5.518 0.760 0.612

BAYN.DE ARMA(1,1)-GARCH(1,1) 0.000 0.522 -0.570 0.000 0.106 0.849 6.591 0.951 0.787

BBVA.MC GARCH(1,1) 0.000 - - 0.000 0.115 0.878 7.160 0.711 0.085

BN.PA ARMA(1,1)-GARCH(1,1) 0.000 0.626 -0.699 0.000 0.089 0.893 8.381 0.958 0.640

BNP.PA GARCH(1,1) 0.000 - - 0.000 0.089 0.909 7.189 0.554 0.864

CA.PA GARCH(1,1) 0.000 - - 0.000 0.069 0.926 5.680 0.860 0.208

CS.PA MA(1)-GARCH(1,1) 0.000 - 0.019 0.000 0.106 0.890 9.658 0.486 0.171

DAI.DE AR(1)-GARCH(1,1) 0.001 0.011 - 0.000 0.102 0.896 5.319 0.552 0.251

DB1.DE GARCH(1,1) 0.001 - - 0.000 0.086 0.908 7.695 0.730 0.079

DBK.DE AR(1)-GARCH(1,1) 0.000 0.028 - 0.000 0.116 0.891 6.442 0.576 0.408

DG.PA GARCH(1,1) 0.001 - - 0.000 0.094 0.902 8.534 0.256 0.254

DTE.DE GARCH(1,1) 0.000 - - 0.000 0.075 0.918 5.197 0.647 0.956

ENEL.MI MA(1)-GARCH(1,1) 0.001 - -0.073 0.000 0.124 0.870 6.325 0.356 0.078

ENI.MI ARMA(1,1)-GARCH(1,1) 0.001 -0.580 0.526 0.000 0.112 0.874 8.328 0.470 0.484

EOAN.DE GARCH(1,1) 0.001 - - 0.000 0.100 0.881 4.809 0.179 0.781

FP.PA AR(1)-GARCH(1,1) 0.000 -0.001 - 0.000 0.089 0.893 8.904 0.944 0.161

FTE.PA MA(1)-GARCH(1,1) 0.000 - -0.021 0.000 0.037 0.954 5.802 0.936 0.274

G.MI GARCH(1,1) 0.000 - - 0.000 0.102 0.883 5.635 0.922 0.263

GLE.PA ARMA(1,1)-GARCH(1,1) -0.000 -0.416 0.498 0.000 0.117 0.888 7.323 0.770 0.305

GSZ.PA AR(1)-GARCH(1,1) 0.001 -0.032 - 0.000 0.090 0.894 8.604 0.272 0.443

IBE.MC ARMA(1,1)-GARCH(1,1) 0.000 -0.217 0.232 0.000 0.182 0.792 5.047 0.152 0.558

INGA.AS GARCH(1,1) 0.000 - - 0.000 0.166 0.846 5.952 0.746 0.137

ISP.MI ARMA(1,1)-GARCH(1,1) -0.000 -0.133 0.166 0.000 0.103 0.893 6.325 0.398 0.250

MC.PA GARCH(1,1) 0.001 - - 0.000 0.060 0.933 7.057 0.990 0.581

MUV2.DE ARMA(1,1)-GARCH(1,1) 0.001 -0.782 0.744 0.000 0.116 0.868 5.877 0.145 0.062

OR.PA MA(1)-GARCH(1,1) 0.001 - -0.087 0.000 0.082 0.893 8.200 0.983 0.405

PHIA.AS MA(1)-GARCH(1,1) 0.001 - -0.035 0.000 0.072 0.924 7.058 0.358 0.846

REP.MC ARMA(1,1)-GARCH(1,1) 0.000 0.494 -0.502 0.000 0.111 0.871 5.994 0.792 0.223

RWE.DE GARCH(1,1) 0.001 - - 0.000 0.067 0.906 5.728 0.886 0.087

SAN.MC MA(1)-GARCH(1,1) 0.001 - -0.017 0.000 0.124 0.873 8.252 0.677 0.052

SAN.PA GARCH(1,1) 0.000 - - 0.000 0.049 0.946 5.068 0.975 0.586

SGO.PA ARMA(1,1)-GARCH(1,1) 0.001 -0.693 0.639 0.000 0.094 0.907 7.899 0.375 0.779

SIE.DE GARCH(1,1) 0.001 - - 0.000 0.058 0.936 5.161 0.700 0.063

SU.PA ARMA(3,0)-GARCH(1,1)c 0.001 -0.052 - 0.000 0.073 0.920 7.556 0.396 0.435

TEF.MC AR(1)-GARCH(1,1) 0.001 -0.006 - 0.000 0.094 0.882 7.507 0.714 0.451

TIT.MI ARMA(1,1)-GARCH(1,1) -0.000 0.820 -0.867 0.000 0.111 0.869 8.506 0.256 0.217

UCG.MI AR(1)-GARCH(1,1) 0.000 -0.023 - 0.000 0.109 0.899 8.399 0.218 0.128

UL.PA GARCH(1,1) 0.001 - - 0.000 0.099 0.889 8.806 0.677 0.115

UNA.AS GARCH(1,1) 0.001 - - 0.000 0.083 0.902 5.791 0.922 0.064

VIV.PA GARCH(1,1) 0.001 - - 0.000 0.091 0.902 -a 0.250 0.544

SAP.DE MA(1)-GARCH(1,1) 0.000 - 0.010 0.000 0.027 0.961 3.970 0.898 0.251

Table 8: Marginal time series models for the log returns of the considered six indices and 46

stocks.

aNormal error distribution.
bφ̂2 = −0.000, φ̂3 = −0.036, φ̂3 = 0.010 and φ̂4 = −0.040.
cφ̂2 = −0.017 and φ̂3 = −0.092.
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