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Abstract

The goal of the paper is to prove a duality relation between the direct and indirect
utility function without any reference to convexity of preferences, nor quasiconcavity
of the utility function. To reach this result we allow for the pricing system to be
sublinear, rather than linear. The relevance of this assumption has been illustrated
both in Consumer Theory, to keep account of the presence of intermediation or of
bundling, and in Mathematical Finance. The main tool is a nonlinear separation
theory, which uses sublinear functionals to separate points from radiant or coradiant
sets. This yields a characterization of the class of functions for which the duality can be
proved, namely those whose upper level sets are evenly coradiant. Such functions are
nondecreasing along each rays emanating from the origin, a very weak requirement of
nonsatiation of preferences, and satisfy a further technical requirement. The conditions
that we obtain are necessary and sufficient and consequently they offer the minimal
assumption under which a utility function coincides with the dual of the indirect
utility. We underline that this further requirement is always satisfied if u is upper
semicontinuous hence, in particular, if u is continuous or differentiable.

1 Introduction

The term duality, as it is used in Economic Theory, refers roughly to the possibility of
describing a theory by different and equivalent points of view, by emphasizing one aspect
or another, and choosing in various ways the independent variables in terms of which the
analysis should be carried out.

For instance the consumer’s choice can be described by means of the utility function
or the indirect utility function or still by the expenditure function and, under appropriate
assumptions, the knowledge of each of these is sufficient to derive the other ones.

From a mathematical perspective, the equivalence among these concepts is determined
by means of separation results and therefore the assumptions needed for the duality results
are described in terms of convexity of preferences, that is quasiconcavity of the utility
function. The reason that makes convexity unavoidable is that the price system is a
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linear functional on the space X of goods and separation by means of linear functionals
characterize convex sets.

The close relation between separation results and duality is underlined by the axiomatic
approach of McCabe [9], which nevertheless offers no constructive examples besides the
classical one.

Indeed the linearity of a pricing system has often been questioned and the literature
on nonlinear prices is very large. On the other hand, to our knowledge, the analysis of
nonlinear prices have never given rise to a ’nonlinear’ duality theory.

Among the many instances of nonlinear pricing systems, we refer in this paper to
sublinear prices, that is to functionals p : X → IR which are:

i) positively homogeneous, i.e. p(αx) = αp(x) for all x ∈ X and all α > 0 and

ii) subadditive, i.e. p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X.

These features can be easily illustrated thinking of a consumer who faces no discount
for buying greater quantities of a single good, but being (at least sometimes) offered a
discount for buying bundles containing different goods.

Another justification for a sublinear pricing system comes from the presence of inter-
mediation. The difference between the bid price and the ask price (bid-ask spread) entails
a sublinear pricing rule in that p(x) + p(−x) ≥ 0 = p(0). See for instance Foley [4] or, in
Capital Asset Pricing Models, Jouini e Kallal [5].

If the normalized price functional p : X → IR is sublinear (and continuous) then the
budget constraint B(p) = {x ∈ K : p(x) ≤ 1}, where K ⊂ X is a closed convex cone and
1 is the (unitary) income, is a closed convex set with the origin as an interior point (with
respect to the relative topology of K), but not necessarily a simplex, due to nonlinearity
of p.

If we consider two goods, labelled 1 and 2, and x̄1 and x̄2 are such that p(x̄1, 0) =
p(0, x̄2) = 1, that is x̄1 and, respectively, x̄2 are the maximum quantities of goods 1 and
2 the consumer is allowed to buy if she spends all her income in just one good, then the
budget set contains bundles which lies beyond the line segment joining the vectors (x̄1, 0)
and (0, x̄2).

In this situation the positivity of prices, as illustrated by the negative slope of the
budget set, is not described by the requirement that p be nonnegative on K, but rather
by its monotonicity with respect to the order induced by the cone of nonnegative goods
K ⊆ X, which is typically the nonnegative orthant IRn+. This requires that x − y ∈ K
implies p(x) ≥ p(y). This requirement can be described in analytic terms by the positivity
of the subgradients of p.

Positivity of prices is not necessary for our results and we leave for a future study the
analysis of this special situation, in which positivity of p is closely related to componen-
twise monotonicity of u and v. In the sequel we will denote by P the set of all possible
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nonnegative price functionals, that is all continuous and sublinear functionals p : X → IR
such that p(x) ≥ 0 for all x ∈ K. The set P is a convex cone which contains the set K+

of positive linear prices.
In an economic system in which prices are allowed to be sublinear rather than linear (or

linear as a special case), the dual set becomes much larger and this allows to characterize
in dual terms a corrispondingly larger class of primal objects (both sets and functions).

It has recently been developed in [18] a nonlinear separation theory in which the use
of sublinear separating functionals yields a characterization of particular classes of radiant
and coradiant sets of the normed space X. We recall that a subset A ⊆ X is called radiant
if αx ∈ A for all x ∈ A and all α ∈ [0, 1] and that the complement of a radiant sets is
called coradiant, that is a nonempty set A is coradiant when A = X or when 0 /∈ A and
αx ∈ A for all x ∈ A and all α ≥ 1.

Among the results proved in [18], the most relevant for our purposes are the ones
concerning coradiant sets. The first of them states that a set A of a normed space X is
closed and coradiant if and only if for every point x /∈ A there exists a sublinear continuous
functional p : X → IR such that p(x) < 1 and p(a) ≥ 1 for all a ∈ A. In this case the
vector x receives from p a value which is strictly greater than the infimum of p over A.
A second result characterizes those coradiant sets which enjoy weak separation, that is
p(x) = 1 ≤ infA p(a): a subclass of sets, called evenly coradiant and containing closed
coradiant sets. This is in close analogy with the use of weak separation and evenly convex
sets in ’linear’ duality (see e.g. [7, 8]).

The class of utility functions that we can characterize by means of duality results are
the ones whose upper level sets are evenly coradiant and this means, except for a further
technical requirement which will be clarified below, any function which is increasing (we
should say nondecreasing) along each rays emanating from the origin.

Thus the duality results between direct and indirect utility functions we are about to
describe make no use whatsoever of convexity of preferences, nor quasiconcavity of the
utility function. In place of this we assume that

u(αx) ≥ u(x) ∀x ∈ K, ∀α ≥ 1, (1)

where K ⊂ X is a convex cone in X. This requires that a proportional increase in
each good of the bundle x does not decrease utility, that is a very weak assumption of
nonsatiation of preferences. Functions with this property will be called radiant in the
sequel, in accordance with the terminology developed in [17] and [18], or equivalently
increasing along rays (i.a.r.).

We define the indirect utility function in the standard way, that is a function v defined
on P and such that

v(p) = sup{u(x) : p(x) ≤ 1}
and show that u coincides with the dual v∗ = u∗∗ of v if and only if u is increasing along
rays together with another technical assumption which is implied by its differentiability or
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continuity or even upper semicontinuity. Moreover v is quasiconvex in P and decreasing
along rays.

In the sequel we consider a space of goods given by a closed convex cone K in a normed
vector space X. We denote by X ′ the topological dual of X, that is the space of linear
continuous functionals from X to IR and by

K+ ≡ {` ∈ X ′ : `(x) ≥ 0, ∀x ∈ K}

the positive polar cone of K, that is the set of functionals in X ′ which are nonnegative on
K. This is identified with the space of positive linear prices.

If p : X → IR is a sublinear continuous functional, we say that a linear continuous
functional ` from X to IR is a subgradient of p (at the origin) if `(x) ≤ p(x) for all x ∈ X.
For a function u : X → IR, where IR = [−∞,+∞] is the set of extended real number, we
will use the symbol [u ≤ k] for the set {x ∈ X : u(x) ≤ k} with k ∈ IR. The sets [u < k],
[u ≥ k] and [u > k] are defined similarly.

An outline of the rest of the paper is the following: Section 2 introduces evenly cora-
diant sets and analyzes some classes of functions which are increasing along rays. We are
particularly interested in those radiant functions whose upper level sets are evenly coradi-
ant (we call them regular). We also study other classes of radiant functions with the aim
to show how slight is the restriction posed by the assumption of regularity. In Section 3
we deal with dual properties of evenly coradiant sets and of regular radiant functions. The
former can be described in terms of separation or, equivalently, in terms of an appropriate
polarity relation. This might be used, according to an abstract scheme (see e.g. [15] or
[13]), to define the (generalized) conjugate function of u, which is precisely the indirect
utility function v. We do this directly and study the duality between u and v in Section
4, which contains the main results of the paper.

2 Classes of radiant utility functions

We consider a consumer whose preferences on the space K are described by a utility
function u : K → IR.

Such function is usually considered in the economic literature to take values into IR.
However the indirect utility derived from umay naturally take values into the extended real
numbers IR = IR∪{+∞}∪{−∞} = [−∞,+∞]. Since we are interested in duality results
which should guarentee that u coincides with the dual of the indirect utility function, we
are lead to consider the possibility that also u takes values into IR.

Radiant functions can be defined in terms of their level sets. It is proved in [16] and
easy to verify that a function f : X → IR is radiant if and only if one of the following
equivalent conditions is satisfied:

i) The set [u ≤ k] is radiant for every k ∈ IR;
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ii) the set [u < k] is radiant for every k ∈ IR;

iii) the set [u ≥ k] is coradiant for every k ∈ IR;

iv) the set [u > k] is coradiant for every k ∈ IR;

v) for every x ∈ K the function fx : IR+ → IR given by

fx(α) = f(αx)

is nondreasing on IR+.

In [16, 17, 18] some subclasses of radiant and coradiant sets are studied by means of
their separation properties. In this paper we will be interested in particular in evenly
coradiant sets, which are defined as follows.

Definition 2.1 A coradiant set S ⊆ X is called evenly coradiant if, it holds

−x /∈ T (S, x) for all x /∈ S, (2)

where T (S, x) is the tangent cone to S at x and v ∈ T (S, x) if there exist sequences
{vn} → v and {tn} → 0+ such that x+ tnvn ∈ S.

Evenly coradiant sets are important for their separation properties, as will be shown in
Section 3. It is easy to see that a closed coradiant set is evenly coradiant, but the converse
is not true in general. The origin cannot belong to an evenly coradiant set A nor to its
closure. Indeed, for any set S, if x ∈ clS then 0 ∈ T (S, x) and then if 0 ∈ clA, it holds
0 ∈ T (A, 0) against the definition. Moreover T (S, x) = ∅ if x /∈ clS and then condition (2)
makes sense only for points x ∈ clA\A. If A is nonempty, from a graphical point of view,
the only restriction posed by (2) is that x should not stand on a cusp of A whose tangent
is directed to the origin. For the results which follow we will be particularly interested in
those radiant functions whose upper level sets are evenly coradiant.

Definition 2.2 A radiant function u : X → IR is called regular if the level sets [u ≥ k]
are evenly coradiant for every k ∈ IR.

As we noticed above, if the level sets [u ≥ k] are closed and coradiant (hence if u is
radiant and upper semicontinuous, in the sequel u.s.c.) then u is regular. If we consider
functions u which are not u.s.c., it is not easy to use condition (2) to see what type of
restriction is imposed to a radiant function by the requirement that its upper level sets
are evenly coradiant. Just by rewording condition (2) it is possible to say that a function
u is regular if and only if, when u(x) < k then u(x − tnxn) < k for all sequences {tn}
converging to 0+ and all sequences {xn} converging to x. To have a better grasp to this
notion, it is easier to study a subclass of regular radiant functions.
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Definition 2.3 A function u : K → IR is said to be coherently radiant if for all x ∈ K
there exists δ > 0 (with δ ≤ 1) such that:

u(x− tz) ≤ u(x) ∀t ∈ (0, δ) ∀z ∈ B(x, δ), (3)

where B(x, δ) is the closed ball of radius δ around x.

Condition (3), which implies monotonicity along rays, requires the existence of a small
‘petal’ with apex at x and directed toward the origin in which the function u cannot take
values higher than u(x). Equivalently, condition (3) exclude cases in which the strict upper
level set of u at x, [u > u(x)] has a tangent direction at x in the direction −x. This can
also be described by a differential property of u at the point x. We recall that the upper
Hadamard directional derivative of the function u at the point x in the direction d ∈ X is
given by

u+H(x, d) = lim sup
dn→d

tn→0+

u(x+ tndn)− u(x)

tn
.

Indeed we have the following characterization, whose proof can be easily adapted from
[17, Thm. 3.6].

Proposition 2.4 For the function u : K → IR the following are equivalent:

a) u is coherently radiant;

b) For all x ∈ K, −x /∈ T (S, x), where S = [u > u(x)];

c) the strict level sets [u > k] are evenly radiant for every k ∈ IR;

d) u+H(x,−x) ≤ 0.

Condition (c) above can be used to show that all coherently radiant functions are
regular. Indeed the class of evenly coradiant sets is closed under intersection and the
equality

[u ≥ k] =
⋂
s<k

[u > s],

which holds for all functions u, shows that all (weak) upper level sets [u ≥ k] are evenly
coradiant if the strict upper level sets [u > s] have this property.

For an example which shows that the converse relation is not generally true, we may
refer to the following function f : IR2

+ → IR:

f(x, y) =


1 y ≥ x ≥ 0 and

√
x2 + y2 ≥ 1√

x2 + y2 y ≥ x ≥ 0 and
√
x2 + y2 < 1

y/x 0 ≤ y < x and
√
x2 + y2 ≥ 1

y
√
x2 + y2/x 0 ≤ y < x and

√
x2 + y2 < 1
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The function f coincides, outside the unit ball, with a function which is nonnegative,
positively homogeneous of degree zero, and hence constant on every rays, and continuous
except at the origin. The value of f inside the unit ball increases linearly along every
ray, so that f is nondecreasing and continuous along rays. Thus f is continuous on IR2

+.
Hence its upper level sets [f ≥ k] are closed and coradiant for every k ∈ IR. Since every
closed coradiant set is evenly coradiant, the function f is regular. To show that f is not
coherently radiant, consider any k ∈ [0, 1) and the strict level set [f > k]. If we consider
a point P = (x, kx) outside the unit ball, the function f takes (sufficiently close to P ),
the value k for all points which stay on the ray defined by P and condition (3) is not
satisfied since f(P ) = k and for every δ we can find t ∈ (0, δ) and z ∈ B(P, δ) such that
f(P − tz) > k.

Note also that condition (d) has a much simpler form if u is differentiable at x, with
gradient vector ∇u(x). In this case we have u+H(x, d) = ∇u(x) · d and we can say that
u is coherently radiant at x if and only if ∇u(x) · x ≥ 0, which in turn is true for all
differentiable radiant functions. This shows that every differentiable radiant functions
are coherently radiant and hence evenly coradiant. A similar argument shows that every
Lipschitz continuous radiant function is coherently radiant. Simple examples in IR2 can be
given to show that there might exists continuous radiant functions which are not coherently
radiant.

3 Dual properties of radiant functions

Closed coradiant sets and evenly coradiant sets enjoy particular separation properties
which make them analogous to closed convex and evenly convex sets. Such properties are
studied in [18].

Proposition 3.1 For a set S ⊆ X the following are true.

a) S is closed and coradiant if and only if for every point x /∈ S there exists a sublinear
continuous function p : X → IR such that p(x) < 1 and p(s) ≥ 1 for all s ∈ S.

b) S is evenly coradiant if and only if for every point x /∈ S there exists a sublinear
continuous function p : X → IR such that p(x) ≤ 1 and p(s) > 1 for all s ∈ S.

It is clear that every closed coradiant set is evenly coradiant. If we change in Proposi-
tion 3.1 the word sublinear with linear we obtain a well known characterization of closed
convex (and, respectively, evenly convex) coradiant sets. The term evenly convex describe
precisely those convex sets which can be seen as intersection of open halfspaces. We bor-
row the same terminology for those coradiant sets which can be seen as intersection of
open level sets [p > 1], where p is sublinear.
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The result which is more interesting for us in Proposition 3.1 is part (b). It amounts
to say that for every bundle x ∈ K there exists a sublinear price system p such that x
gives the maximum utility on the budget set B(p) = {x ∈ K : p(x) ≤ 1} defined by the
price p. Indeed let u(x) = k and S = [u > k]. Then x /∈ S (if u is strictly increasing
along rays, then x lies on the boundary of S) and, by Proposition 3.1 (b), there exists a
sublinear pricing system p such that p(x) = 1 and p(y) > 1 for all bundles y ∈ S. Then
B(p) contains no bundle whose utility is greater than k = u(x).

It is possible to give a geometric illustration of Proposition 3.1 using the fact that
nonnegative sublinear continuous functions are completely characterized by their level
sets [p ≤ 1] (see e.g. [6]).

Indeed if p is sublinear, continuous, nonnegative then S = [p ≤ 1] is closed, convex with
0 ∈ intS. If conversely S is closed, convex with 0 ∈ intS, then the function p(x) = inf{λ >
0 : x ∈ λS} is sublinear, continuos, nonnegative with S = [p ≤ 1]. Thus Proposition 3.1
can be expressed in a geometric form by saying the following:

a) A set S is closed and coradiant if and only if for every point x /∈ S there exists an
open convex set C such that 0 ∈ C, x ∈ C and C ∩ S = ∅.

b) A set S is evenly coradiant if and only if for every point x /∈ S there exists a closed
convex set C such that 0 ∈ intC, x ∈ C and C ∩ S = ∅.

Again part (b) is the one the fits more closely our economic setting, in that it gives a
geometric interpretation for the requirement that u be regular, that is its upper level sets
be evenly coradiant. Indeed if there were a displacement from x /∈ S which is tangent to
S and leading to the origin, then there could be no sublinear pricing system giving x as
the maximum of utility in the budget set B(p).

The separation properties described in Proposition 3.1 can equivalently be described
in terms of polarity relations between sets of X and sets of the space P of sublinear
continuous functions. For a polarity between X and P we mean a map P which associates
a set in P to every set in X and satisfies

P

(⋃
i∈I

Si

)
=
⋂
i∈I

P (Si).

We will make use of the following polarity relations between X and P: for every set
S ⊆ X, we define its polar S. and its strict polar S/ as

S. = {p ∈ P : p(s) ≥ 1, ∀s ∈ S}

and
S/ = {p ∈ P : p(s) > 1, ∀s ∈ S}.
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Repeating the same procedure we can obtain the bipolars

S.. = {x ∈ X : p(x) ≥ 1, ∀p ∈ S.}

and
S// = {x ∈ X : p(x) > 1, ∀p ∈ S/}.

It is easy to see that both S.. and S// contain S. Proposition 3.1 can be used to prove
that the sets S ⊆ X for which S.. = S are precisely those which are closed and coradiant,
while S// = S holds if and only if S is evenly coradiant. For the use of convex polarity
(the one in which linear functions are used instead of sublinear ones) in Economic Theory
one may refer to [14].

Note that both the polar sets S. and S/ are convex sets in P. Indeed if p1 and p2 are
elements of S., that is if pi(s) ≥ 1 for all s ∈ S and for i = 1, 2 and we take t ∈ [0, 1], then
(tp1 + (1− t)p2)(s) = tp1(s) + (1− t)p2(s) ≥ 1 for all s ∈ S, whence tp1 + (1− t)p2 ∈ S..

It will be useful in the sequel to note also that for a function u which is radiant and
regular it holds [u ≥ k] = [u ≥ k]//, since these functions are defined precisely through
the requirement that their upper level sets are evenly coradiant.

4 Indirect utility and duality

We are ready to introduce the indirect utility function derived from u, according to the
usual definition. Given a utility function u : K → IR, the indirect utility function associ-
ated to u is the function v : P → IR given by

v(p) = sup{u(x) : p(x) ≤ 1}.

Remark 4.1 The usual domain of the indirect utility function is the polar cone K+ of
nonnegative prices. Functionals in K+ are increasing with respect to K. Analogously we
might restrict the domain of v to the set P+ of those sublinear pricing functionals which
are increasing with respect to K, i.e.

P+ = {p ∈ P : x, y ∈ K, y − x ∈ K ⇒ p(y) ≥ p(x)}.

This surely brings our analysis closer to reality. For results in which the indirect utility
v is defined on P+ (rather than P), we should give an analogue to Proposition 3.1 in which
the pricing functional is guaranteed to stay in P+. This is not generally true, but can be
given when u is nondecreasing with respect to K. We will deal with this problem in some
future research.

The definition of the indirect utility function v can be seen as a particular instance of
generalized conjugate function (see [8] for the relevance of generalized conjugation theory in
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Economics). Abstract conjugation can always be defined by means of a polarity relation
P (see e.g. [10, 15]) and, if we decided to follow this route, it would lead to a second
conjugate function which coincides with u exacly when the upper level sets of u coincide
with their second polar. In this case, using the polarity P = /, we might deduce some
properties of v from known results about generalized conjugation theory. For the sake of
clarity and completeness will will not do so.

The relation between the definition of indirect utility function and the strict polarity
defined above leads us to use at times the symbol u/ instead of v. Such relation depends
on a strong link between level sets of v and those of u. Indeed we can show that the lower
level sets of v are polar to the strict upper level sets of u.

Proposition 4.2 For every function u : K → IR and its indirect function v = u/ it holds

[v ≤ k] = [u > k]/, ∀k ∈ IR.

Proof: It holds, for each k ∈ IR:

p ∈ [v ≤ k] ⇐⇒ v(p) ≤ k
⇐⇒ u(x) ≤ k ∀x ∈ [p ≤ 1]

⇐⇒ p(x) ≤ 1⇒ u(x) ≤ k
⇐⇒ u(x) > k ⇒ p(x) > 1

⇐⇒ p(x) > 1 ∀x ∈ [u > k]

⇐⇒ p ∈ [u > k]/

�
Since a polar set is always convex, we note that the indirect utility function derived

from any utility u is quasiconvex on P. More precisely, recalling that, for every fixed
x ∈ K, the function p 7→ p(x) is linear on P, we notice that any indirect utility function
v is evenly quasiconvex, that is its lower level sets are intersection of open ’halfspaces’ of
the form H(x) = {p ∈ P : p(x) > 1}.

Another property which is always verified by indirect utility functions in their usual
(linear) setting, is that they are nonincreasing. This follows from the requirement that
they are defined on K+. For us the following is true: every indirect utility function is
nonincreasing along rays in P. Thus the usual properties of the indirect utility function
are preserved in the new setting.

Following the usual construction we can introduce the dual (conjugate) of the indirect
utility, as the function v/ = u// : K → IR given by

v/(x) = inf{v(p) : p(x) ≤ 1}.
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It is easy to show that it holds u//(x) ≥ u(x) for all x ∈ K. Indeed we have

u//(x) = inf{u/(p), p(x) ≤ 1}
= inf

p: p(x)≤1
{ sup
z: p(z)≤1

u(z)}

≥ u(x).

Moreover u// is radiant. Indeed taking α ≥ 1 we have that

{p : p(αx) ≤ 1} ⊆ {p : p(x) ≤ 1}

and hence

u//(x) = inf{u/(p) : p(x) ≤ 1} ≤ inf{u/(p) : p(αx) ≤ 1} = u//(αx).

Our main interest is in the following question: under what conditions we might prove
that u// = u? What are the minimal conditions on u which guarantee that the above
equality holds?

Such questions are answered in [7] in the usual case of linear prices. For a function
f : X → IR we indicate with f the greatest lower semicontinuous function which minorizes

f and with f the smallest upper semicontinuous function which majorizes f .

Proposition 4.3 [7, Thm. 2.4] Let u : K → IR. Then there exists v : K+ → IR such
that

u(x) = inf{v(p) : 〈x, p〉 ≤ 1}, for all x ∈ K (4)

if and only if u is nondecreasing, evenly quasiconcave and satisfies the condition

u(x0) ≥ lim
α→1−

u(αx0) ∀x0 ∈ K. (5)

Moreover v can be taken nonincreasing, evenly quasiconvex with

v(p0) ≤ lim
α→1−

v(αp0) ∀p0 ∈ K+.

Under these conditions v is unique, namely v is the smallest function for which (4) holds;
furthermore v is the indirect utility function associated with u.

If a function f is evenly quasiconvex, then its lower level sets [f ≤ k] can be seen as
intersection of open halfspaces [` < γ] with ` ∈ X ′ and γ ≥ 0. Condition (5) is needed to
guarentee that γ > 0 so that p = `/γ can be taken as pricing functional. It is indeed quite
close in spirit to condition (2) with S = [u ≥ u(x)]. Indeed it can be shown that these
conditions coincide for quasiconcave functions.

We want to show that a result similar to Proposition 4.3 is true in the present setting,
i.e. the coincidence beteween u and the conjugate of its indirect utility v holds true if and
only if u is radiant and regular.
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Proposition 4.4 Let u : K → IR. Then there exists v : P → IR such that

u(x) = inf{v(p) : 〈x, p〉 ≤ 1}, for all x ∈ K (6)

if and only if u radiant and regular. Moreover v can be taken nonincreasing along rays
and evenly quasiconvex. In particular the smallest function v for which (6) holds is the
indirect utility function associated with u, namely

v(p) = sup{u(x) : p(x) ≤ 1}.

Proof: Suppose that u(x) = inf{v(p) : p(x) ≤ 1} for some function v : P → IR. To show
that u is regular, choose k ∈ IR and x /∈ [u ≥ k] that is u(x) < k. Then there exists p̄ ∈ P
with p̄(x) ≤ 1 such that v(p̄) < k. Moreover, if z ∈ [u ≥ k] then

v(p) ≥ u(z) ≥ k for all p such that p(z) ≤ 1,

which is the same as

p(z) > 1 for all p such that v(p) < k.

Hence we found p̄ ∈ P such that p̄(x) ≤ 1 and p̄(z) > 1 for all z ∈ [u ≥ k] and u is regular.
To prove the converse, let u be regular and take v(p) = sup{u(x) : p(x) ≤ 1}. Then

it is easy to show that u//(x) ≥ u(x) for all x ∈ K. Reasoning by contradiction, suppose
that there exists some x̄ such that u//(x̄) > u(x̄). Then it holds

u//(x̄) > k > u(x̄) (7)

for some k ∈ IR. Since x̄ /∈ [u ≥ k] and u is regular, then there exists p̄ ∈ P such that
p̄(x̄) ≤ 1 and p̄(z) > 1 for all z ∈ [u ≥ k]. The latter condition means that p̄(z) ≤ 1
implies u(z) < k and hence

v(p̄) = sup{u(x) : p̄(x) ≤ 1} ≤ k.

Recalling that p̄(x̄) ≤ 1, we can deduce that

u//(x̄) = inf{v(p) : p(x) ≤ 1} ≤ v(p̄) ≤ k,

and this is a contradiction to (7). Thus u//(x) = u(x) for all x ∈ K.
The indirect utility function is nonincreasing along rays and evenly quasiconvex.
If there exists another function v̄ ∈ P such that u(x) = inf{v̄(p) : p(x) ≤ 1}, then, for

arbitrary p ∈ P and x ∈ K satisfying p(x) ≤ 1, it holds v̄(p) ≥ u(x) and hence

v̄(p) ≥ sup{u(x) : p(x) ≤ 1} = v(p).

�
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